一种基于元强化学习的端到端自动驾驶方法及系统

    公开(公告)号:CN116469080A

    公开(公告)日:2023-07-21

    申请号:CN202310458868.5

    申请日:2023-04-26

    Applicant: 上海大学

    Abstract: 本发明涉及一种基于元强化学习的端到端自动驾驶方法及系统,其中方法首先采集多个数据集用于训练MVWG(Meta‑VAE‑WGAN‑GP)特征提取模型,在不同的驾驶任务上训练MPPO(Meta‑Proximal Policy Optimization)决策控制模型,面临新的驾驶任务时,用训练好的MVWG特征提取模型和MPPO决策控制模型初始化自动驾驶系统;当智能车面临新的驾驶场景时,由摄像头实时采集环境图片,并将图片输入特征提取模型进行编码,提取特征,将提取的特征信息输入给智能体,智能体结合自身当前的运行信息,根据初始化后的MPPO策略输出相应的决策控制动作,同时将动作反馈给驾驶环境,继续优化驾驶策略,最终训练得到稳定的自动驾驶系统。与现有技术相比,本发明具有模型训练速度快、泛化性能高、提取特征质量高等优点。

Patent Agency Ranking