-
公开(公告)号:CN112054208B
公开(公告)日:2022-06-28
申请号:CN202010185931.9
申请日:2020-03-17
Applicant: 安徽理士新能源发展有限公司 , 上海大学
IPC: H01M4/66 , H01M4/70 , H01M4/134 , H01M4/38 , H01M4/04 , H01M4/1395 , H01M10/0525 , H01M10/058 , C25D3/50
Abstract: Cu3Pt铜网‑锂金属电极及其制法及锂电池制法,包括所述电极为三维多孔框架结构,所述电极包括Cu3Pt铜网和锂金属箔;所述锂金属箔完全嵌入于所述Cu3Pt铜网内;所述Cu3Pt铜网包括Cu基集流体和Cu3Pt涂层,所述Cu基集流体的外表面均匀包裹有所述Cu3Pt涂层;Cu3Pt铜网具有超粗糙表面;合成氯铂酸混合溶液;合成Cu3Pt铜网;制备电极;本发明通过电镀置换反应,可快速和简单的在铜网外壁包裹一层Cu3Pt合金,从而使得Cu3Pt铜网具有超粗糙的表面,因此具有相当大的表面积;Cu3Pt中的Pt原子可以与Li结合(即Cu3Pt中的Pt原子可以被锂化),与Li具有很高的亲和力。因此,Cu3Pt‑铜网降低了Li金属的成核过电位。
-
公开(公告)号:CN113148976A
公开(公告)日:2021-07-23
申请号:CN202110447439.9
申请日:2021-04-25
Applicant: 上海大学
IPC: C01B32/05 , H01M4/587 , H01M10/0525
Abstract: 本发明提供了一种生物质多孔硬碳材料及其制备方法和应用,属于储能材料技术领域。本发明提供的生物质多孔硬碳材料的制备方法,包括以下步骤:将全麦面粉、KOH与水混合,得到液体混合物;去除所述液体混合物中的水,得到固凝胶;将所述固凝胶在保护气氛中进行煅烧,之后经洗涤,得到生物质多孔硬碳材料。本发明以全麦面粉作为生物质原料制备多孔硬碳材料,全麦面粉来源广泛,原料成本低,在KOH作用下经一步煅烧即可制备得到多孔硬碳材料,操作简单,生产成本低,最终制备得到的无序多孔硬碳材料具有较大的比表面积以及优异的储钠性能。
-
公开(公告)号:CN112421115A
公开(公告)日:2021-02-26
申请号:CN202010959376.0
申请日:2020-09-14
Applicant: 上海大学
IPC: H01M10/058 , H01M4/66 , H01M4/62 , H01M4/80 , H01M10/052 , C23C26/00 , C23G1/10
Abstract: 本发明公开了一种硒化铜原位包覆泡沫铜作为锂金属载体的锂金属基电池及其制备方法,具体步骤包括:(1)将二氧化硒在水溶液中溶解;(2)纯化后的泡沫铜浸入溶液中;(3)将浸泡后的改性泡沫铜放入真空干燥箱中干燥;(4)对改性后得到的硒化铜原位包覆的泡沫铜集流体进行锂金属负载以及电化学性能表征。本发明采用液相硒化对价格低廉的泡沫铜进行表面亲锂改性,并与锂金属进行复合,利用泡沫铜自身的化学组成、多维穿插结构和良好的电导率及表面层的亲锂性,来达到容纳并均匀锂形核,抑制锂枝晶生长,最终提高锂金属负极的库伦效率和循环性能的目的。该方法具有生产周期短,工艺简单,生产成本低,循环稳定性高的优点。
-
公开(公告)号:CN112054208A
公开(公告)日:2020-12-08
申请号:CN202010185931.9
申请日:2020-03-17
Applicant: 安徽理士新能源发展有限公司 , 上海大学
IPC: H01M4/66 , H01M4/70 , H01M4/134 , H01M4/38 , H01M4/04 , H01M4/1395 , H01M10/0525 , H01M10/058 , C25D3/50
Abstract: Cu3Pt铜网‑锂金属电极及其制法及锂电池制法,包括所述电极为三维多孔框架结构,所述电极包括Cu3Pt铜网和锂金属箔;所述锂金属箔完全嵌入于所述Cu3Pt铜网内;所述Cu3Pt铜网包括Cu基集流体和Cu3Pt涂层,所述Cu基集流体的外表面均匀包裹有所述Cu3Pt涂层;Cu3Pt铜网具有超粗糙表面;合成氯铂酸混合溶液;合成Cu3Pt铜网;制备电极;本发明通过电镀置换反应,可快速和简单的在铜网外壁包裹一层Cu3Pt合金,从而使得Cu3Pt铜网具有超粗糙的表面,因此具有相当大的表面积;Cu3Pt中的Pt原子可以与Li结合(即Cu3Pt中的Pt原子可以被锂化),与Li具有很高的亲和力。因此,Cu3Pt‑铜网降低了Li金属的成核过电位。
-
公开(公告)号:CN113707845A
公开(公告)日:2021-11-26
申请号:CN202110998822.3
申请日:2021-08-28
Applicant: 上海大学
IPC: H01M4/134 , H01M4/80 , H01M4/66 , H01M4/62 , H01M4/1395 , H01M10/054
Abstract: 本发明涉及钾金属电池技术领域,尤其涉及一种钾金属电池负极及其制备方法和应用、钾金属电池。本发明提供的钾金属电池负极,包括金负载的泡沫铜集流体和钾片;所述钾片镶嵌在所述金负载泡沫铜集流体的孔隙结构中。本发明中,所述泡沫铜集流体中的三维多孔结构限制了循环过程中钾负极的体积膨胀;金具有较低的成核过电位,是电池循环过程中钾离子的优先沉积位点,能够使钾金属沉积更加均匀,从而抑制了枝晶的生长。因此,所述钾金属电池负极能够显著减小循环过程中钾金属的体积膨胀和抑制枝晶的生长,实现较高的库伦效率、较长的循环寿命和优秀的倍率性能。
-
公开(公告)号:CN113707845B
公开(公告)日:2023-01-17
申请号:CN202110998822.3
申请日:2021-08-28
Applicant: 上海大学
IPC: H01M4/134 , H01M4/80 , H01M4/66 , H01M4/62 , H01M4/1395 , H01M10/054
Abstract: 本发明涉及钾金属电池技术领域,尤其涉及一种钾金属电池负极及其制备方法和应用、钾金属电池。本发明提供的钾金属电池负极,包括金负载的泡沫铜集流体和钾片;所述钾片镶嵌在所述金负载泡沫铜集流体的孔隙结构中。本发明中,所述泡沫铜集流体中的三维多孔结构限制了循环过程中钾负极的体积膨胀;金具有较低的成核过电位,是电池循环过程中钾离子的优先沉积位点,能够使钾金属沉积更加均匀,从而抑制了枝晶的生长。因此,所述钾金属电池负极能够显著减小循环过程中钾金属的体积膨胀和抑制枝晶的生长,实现较高的库伦效率、较长的循环寿命和优秀的倍率性能。
-
公开(公告)号:CN112103511A
公开(公告)日:2020-12-18
申请号:CN202010894360.6
申请日:2020-08-31
Applicant: 上海大学
IPC: H01M4/66 , H01M4/74 , H01M4/1395 , H01M4/38 , H01M10/058
Abstract: 本发明公开了一种具有Pd‑Cu网/锂金属复合材料电极的锂电池的制备方法,利用钯和铜网制得的复合材料作为三维集流体可抑制锂枝晶的生长从而实现长寿命锂电池的制造。在锂金属基电池的负极上用Pd和铜网制得的复合材料作为三维集流体能够有效地抑制负极锂枝晶的生长,提高电池的循环寿命。金属锂作为锂电池的负极,具有超高的理论比容量和最低的还原电势,但是不可控的锂枝晶的生长会造成电池内部短路,进而导致电池失效和带来安全隐患。本发明通过电镀置换反应,可简单和快速地在铜网表面修饰上Pd纳米粒子,所制备的Pd‑铜网具有相当大的表面积;而且Pd‑铜网中的Pd原子可与Li结合,与Li具有很高的亲和力,从而可以有效地抑制锂枝晶的生长。
-
公开(公告)号:CN113148976B
公开(公告)日:2022-11-25
申请号:CN202110447439.9
申请日:2021-04-25
Applicant: 上海大学
IPC: C01B32/05 , H01M4/587 , H01M10/0525
Abstract: 本发明提供了一种生物质多孔硬碳材料及其制备方法和应用,属于储能材料技术领域。本发明提供的生物质多孔硬碳材料的制备方法,包括以下步骤:将全麦面粉、KOH与水混合,得到液体混合物;去除所述液体混合物中的水,得到固凝胶;将所述固凝胶在保护气氛中进行煅烧,之后经洗涤,得到生物质多孔硬碳材料。本发明以全麦面粉作为生物质原料制备多孔硬碳材料,全麦面粉来源广泛,原料成本低,在KOH作用下经一步煅烧即可制备得到多孔硬碳材料,操作简单,生产成本低,最终制备得到的无序多孔硬碳材料具有较大的比表面积以及优异的储钠性能。
-
公开(公告)号:CN112421115B
公开(公告)日:2022-11-18
申请号:CN202010959376.0
申请日:2020-09-14
Applicant: 上海大学
IPC: H01M10/058 , H01M4/66 , H01M4/62 , H01M4/80 , H01M10/052 , C23C26/00 , C23G1/10
Abstract: 本发明公开了一种硒化铜原位包覆泡沫铜作为锂金属载体的锂金属基电池及其制备方法,具体步骤包括:(1)将二氧化硒在水溶液中溶解;(2)纯化后的泡沫铜浸入溶液中;(3)将浸泡后的改性泡沫铜放入真空干燥箱中干燥;(4)对改性后得到的硒化铜原位包覆的泡沫铜集流体进行锂金属负载以及电化学性能表征。本发明采用液相硒化对价格低廉的泡沫铜进行表面亲锂改性,并与锂金属进行复合,利用泡沫铜自身的化学组成、多维穿插结构和良好的电导率及表面层的亲锂性,来达到容纳并均匀锂形核,抑制锂枝晶生长,最终提高锂金属负极的库伦效率和循环性能的目的。该方法具有生产周期短,工艺简单,生产成本低,循环稳定性高的优点。
-
-
-
-
-
-
-
-