基于CSI与时域融合算法的指纹定位方法

    公开(公告)号:CN109640269A

    公开(公告)日:2019-04-16

    申请号:CN201811547046.X

    申请日:2018-12-18

    Applicant: 上海大学

    Abstract: 一种基于CSI与时域融合算法的指纹定位方法,在离线阶段以各个参考点获取的CSI的幅度信息对基于时隙指纹的定位网络(SLN)和时域位置融合网络(FN)组成的复合网络进行两步式训练;在在线测试阶段,将实时采集到的CSI信息输入训练后的网络并得出预测位置。本发明以LTE网络的CSI作为更细粒度的指纹,通过基于深度学习的两阶段处理的时域融合算法捕捉CSI指纹的时间波动性和相关性,将CSI指纹的时间相关性考虑到定位系统中,具有更高的精确度、更好的系统鲁棒性且在线测试速度更快。

    多码的深度学习译码器的实现方法

    公开(公告)号:CN108809522A

    公开(公告)日:2018-11-13

    申请号:CN201810742784.3

    申请日:2018-07-09

    Applicant: 上海大学

    Abstract: 一种多码的深度学习译码器的实现方法,通过在两种不同的编码之前加入用于区分两种码字的指示节后对接收端神经网络进行训练,训练后的神经网络作为译码器,使用相同的权重同时学习两种不同的编码的编码方式,达到解码时网络吞吐量的提高。本发明通过共用神经网络同时训练两种不同的编码并共享网络权重,在接收端能够使用深度学习,在接收端所得到的信号加入所提出的指示节后同时放入神经网络中进行学习,相比于传统的解码器可以实现近似的误码率性能以及更高的吞吐量增益。

    基于CSI与时域融合算法的指纹定位方法

    公开(公告)号:CN109640269B

    公开(公告)日:2020-08-14

    申请号:CN201811547046.X

    申请日:2018-12-18

    Applicant: 上海大学

    Abstract: 一种基于CSI与时域融合算法的指纹定位方法,在离线阶段以各个参考点获取的CSI的幅度信息对基于时隙指纹的定位网络(SLN)和时域位置融合网络(FN)组成的复合网络进行两步式训练;在在线测试阶段,将实时采集到的CSI信息输入训练后的网络并得出预测位置。本发明以LTE网络的CSI作为更细粒度的指纹,通过基于深度学习的两阶段处理的时域融合算法捕捉CSI指纹的时间波动性和相关性,将CSI指纹的时间相关性考虑到定位系统中,具有更高的精确度、更好的系统鲁棒性且在线测试速度更快。

    多码的深度学习译码器的实现方法

    公开(公告)号:CN108809522B

    公开(公告)日:2021-09-14

    申请号:CN201810742784.3

    申请日:2018-07-09

    Applicant: 上海大学

    Abstract: 一种多码的深度学习译码器的实现方法,通过在两种不同的编码之前加入用于区分两种码字的指示节后对接收端神经网络进行训练,训练后的神经网络作为译码器,使用相同的权重同时学习两种不同的编码的编码方式,达到解码时网络吞吐量的提高。本发明通过共用神经网络同时训练两种不同的编码并共享网络权重,在接收端能够使用深度学习,在接收端所得到的信号加入所提出的指示节后同时放入神经网络中进行学习,相比于传统的解码器可以实现近似的误码率性能以及更高的吞吐量增益。

Patent Agency Ranking