基于KECA特征降维和聚类的HRCT周围神经分割

    公开(公告)号:CN105512670A

    公开(公告)日:2016-04-20

    申请号:CN201510741859.2

    申请日:2015-11-04

    Applicant: 上海大学

    CPC classification number: G06K9/6223 G06T2207/30004

    Abstract: 本发明公开了一种基于KECA特征降维和聚类的HRCT周围神经分割方法,包括以下步骤:首先,利用非下采样Contourlet变换和广义高斯混合模型对神经HRCT图像进行增强;然后,基于Gabor小波对增强后的图像进行特征提取;在此基础上,采用KECA算法对图像的部分采样数据点进行降维分析,找出降维所需的相关信息;结合KECA算法的特点,利用采样外点扩展算法OSE实现整幅图像所有数据点的特征降维;最后,针对降维后不同类别数据的分布特点,利用改进的KECA谱聚类算法进行聚类分割。本发明利用KECA算法的特点和采样外点扩展算法OSE,减少了图像中的冗余信息对分割结果的影响,在没有医学先验知识和人工干预的情况下,比较准确的实现了HRCT图像的分割。

    基于KECA特征降维和聚类的HRCT周围神经分割

    公开(公告)号:CN105512670B

    公开(公告)日:2019-04-02

    申请号:CN201510741859.2

    申请日:2015-11-04

    Applicant: 上海大学

    Abstract: 本发明公开了一种基于KECA特征降维和聚类的HRCT周围神经分割方法,包括以下步骤:首先,利用非下采样Contourlet变换和广义高斯混合模型对神经HRCT图像进行增强;然后,基于Gabor小波对增强后的图像进行特征提取;在此基础上,采用KECA算法对图像的部分采样数据点进行降维分析,找出降维所需的相关信息;结合KECA算法的特点,利用采样外点扩展算法OSE实现整幅图像所有数据点的特征降维;最后,针对降维后不同类别数据的分布特点,利用改进的KECA谱聚类算法进行聚类分割。本发明利用KECA算法的特点和采样外点扩展算法OSE,减少了图像中的冗余信息对分割结果的影响,在没有医学先验知识和人工干预的情况下,比较准确的实现了HRCT图像的分割。

Patent Agency Ranking