-
公开(公告)号:CN113095019B
公开(公告)日:2022-11-11
申请号:CN202110359329.7
申请日:2021-04-02
Applicant: 上海交通大学 , 国网山东省电力公司枣庄供电公司
IPC: G06F30/36 , G06F119/08
Abstract: 本发明公开了一种局部放电信号仿真方法,其包括步骤:(1)构建等离子体流体模型;(2)采用等离子体流体模型对绝缘气隙局部放电的微观的粒子反应与运动过程进行局部放电仿真,以得到气隙电容值和感应电容值;(3)搭建模拟绝缘气隙局部放电的三电容实体模型;(4)将放电延迟时间、放电起始电压以及所述气隙电容值和感应电容值施加于所述三电容实体模型,并调整三电容实体模型的仿真参数,进行局部放电信号仿真。相应地,本发明还公开了与该方法对应的局部放电信号仿真系统。
-
公开(公告)号:CN111275109A
公开(公告)日:2020-06-12
申请号:CN202010064806.2
申请日:2020-01-20
Applicant: 国网山东省电力公司枣庄供电公司 , 上海交通大学
Abstract: 本发明公开了一种基于自编码器的电力设备状态数据特征选优方法,其包括:(1)采集电力设备的状态数据,并对其进行预处理以作为样本数据;(2)构建自编码器,输入样本数据以对自编码器进行训练,提取自编码器的隐层输出作为样本数据的特征量;(3)对特征量进行降维并进行聚类,经过聚类的特征量分别表征不同的电力设备缺陷类别;(4)分别计算表征电力设备相同缺陷类别的特征量的类内距离和表征电力设备不同缺陷类别的特征量的类间距离;基于类内距离和类间距离,调整自编码器的隐层输出的特征量的数量,循环进行步骤(2)至步骤(4),直到类内距离与类间距离均达到预设的阈值。此外,本发明还公开了一种电力设备状态数据特征选优系统。
-
公开(公告)号:CN111275108A
公开(公告)日:2020-06-12
申请号:CN202010064775.0
申请日:2020-01-20
Applicant: 国网山东省电力公司枣庄供电公司 , 上海交通大学
Abstract: 本发明公开了一种基于生成对抗网络对局部放电数据进行样本扩展的方法,其包括:(1)采集局部放电数据;(2)对局部放电数据进行预处理,以得到真实样本数据;(3)构建生成对抗网络并采用生成对抗网络对局部放电数据进行样本扩展,生成对抗网络包括生成器、判别器和生成样本存储器;(4)采用生成样本存储器中的生成样本数据对真实样本数据进行扩展。此外,本发明还公开了一种对局部放电缺陷进行诊断的方法。另外,本发明还公开了一种基于生成对抗网络对局部放电数据进行样本扩展的系统。该方法可以综合考虑数据集的整体分布,分析数据的分布情况,通过生成对抗网络可以对局部放电数据中少量样本进行数据增强,降低样本不平衡。
-
公开(公告)号:CN110334948B
公开(公告)日:2023-04-07
申请号:CN201910602681.1
申请日:2019-07-05
Applicant: 上海交通大学 , 上海交通大学烟台信息技术研究院
IPC: G06Q10/0635 , G06Q10/0639 , G06Q50/06 , G06F18/214 , G01R31/12
Abstract: 本发明公开了一种基于特征量预测的电力设备局部放电严重程度评估方法,其包括训练步骤和评估步骤,其中:训练步骤包括:(1)收集电力设备的案例PRPS图谱数据;(2)对收集的案例PRPS图谱数据进行预处理;(3)采用自编码器提取的案例PRPS图谱数据的局部放电特征向量;(4)构建门控循环单元模块,输入局部放电特征向量以对其进行训练,以使其输出预测局部放电特征向量;(5)构建基于卷积神经网络的故障二分类模块,采用预测局部放电特征向量作为输入以对其进行训练,以使其基于预测局部放电特征向量所表征的故障概率值而输出该预测局部放电特征向量是否表征电力设备故障的判断。
-
公开(公告)号:CN110334866B
公开(公告)日:2022-11-11
申请号:CN201910602683.0
申请日:2019-07-05
Applicant: 上海交通大学 , 上海交通大学烟台信息技术研究院
Abstract: 本发明公开了一种考虑绝缘缺陷类别与故障关联性的电力设备故障概率预测方法,其包括步骤:(1)采集电力设备的PRPS图谱数据并对其进行预处理;(2)基于经过预处理的PRPS图谱数据提取局部放电特征;(3)将局部放电特征输入经过训练的卷积神经网络,经过训练的卷积神经网络输出电力设备具有某类绝缘缺陷的概率值P(Dk);并且还将局部放电特征输入经过训练的长短时记忆神经网络,经过训练的长短时记忆神经网络输出电力设备在Dk的条件下发生故障的概率P(F|Dk);(4)基于下述公式获得电力设备的最终故障概率P(F):此外,本发明还公开了一种电力设备故障概率预测系统。
-
公开(公告)号:CN110334866A
公开(公告)日:2019-10-15
申请号:CN201910602683.0
申请日:2019-07-05
Applicant: 上海交通大学 , 上海交通大学烟台信息技术研究院
Abstract: 本发明公开了一种考虑绝缘缺陷类别与故障关联性的电力设备故障概率预测方法,其包括步骤:(1)采集电力设备的PRPS图谱数据并对其进行预处理;(2)基于经过预处理的PRPS图谱数据提取局部放电特征;(3)将局部放电特征输入经过训练的卷积神经网络,经过训练的卷积神经网络输出电力设备具有某类绝缘缺陷的概率值P(Dk);并且还将局部放电特征输入经过训练的长短时记忆神经网络,经过训练的长短时记忆神经网络输出电力设备在Dk的条件下发生故障的概率P(F|Dk);(4)基于下述公式获得电力设备的最终故障概率P(F):此外,本发明还公开了一种电力设备故障概率预测系统。
-
公开(公告)号:CN110334948A
公开(公告)日:2019-10-15
申请号:CN201910602681.1
申请日:2019-07-05
Applicant: 上海交通大学 , 上海交通大学烟台信息技术研究院
Abstract: 本发明公开了一种基于特征量预测的电力设备局部放电严重程度评估方法,其包括训练步骤和评估步骤,其中:训练步骤包括:(1)收集电力设备的案例PRPS图谱数据;(2)对收集的案例PRPS图谱数据进行预处理;(3)采用自编码器提取的案例PRPS图谱数据的局部放电特征向量;(4)构建门控循环单元模块,输入局部放电特征向量以对其进行训练,以使其输出预测局部放电特征向量;(5)构建基于卷积神经网络的故障二分类模块,采用预测局部放电特征向量作为输入以对其进行训练,以使其基于预测局部放电特征向量所表征的故障概率值而输出该预测局部放电特征向量是否表征电力设备故障的判断。
-
公开(公告)号:CN110334865A
公开(公告)日:2019-10-15
申请号:CN201910602682.6
申请日:2019-07-05
Applicant: 上海交通大学 , 上海交通大学烟台信息技术研究院
Abstract: 本发明公开了一种基于卷积神经网络的电力设备故障率预测方法,其包括训练步骤和预测步骤,其中,训练步骤包括:(1)收集电力设备的案例PRPS图谱;(2)对收集的案例PRPS图谱数据进行预处理;(3)构建第一卷积神经网络模块,并对第一卷积神经网络模块进行训练,以使其输出为案例PRPS图谱数据对应的缺陷类型;(4)基于缺陷类型构建各个缺陷类型的数据集;(5)对应各个缺陷类型分别构建各自的故障二分类子模块,其中每一个故障二分类子模块均基于第二卷积神经网络模块而构建;训练第二卷积神经网络,以使各故障二分类子模块基于案例PRPS图谱数据所得到发生故障的概率值,而输出电力设备是否发生故障的判断。
-
公开(公告)号:CN110334865B
公开(公告)日:2023-04-18
申请号:CN201910602682.6
申请日:2019-07-05
Applicant: 上海交通大学 , 上海交通大学烟台信息技术研究院
IPC: G06Q10/04 , G06Q10/0635 , G06Q10/20 , G06Q50/06 , G06F18/243 , G06F18/2415 , G06F18/214 , G06N3/045 , G06N3/0464 , G06N3/047 , G06N3/048 , G06N3/084
Abstract: 本发明公开了一种基于卷积神经网络的电力设备故障率预测方法,其包括训练步骤和预测步骤,其中,训练步骤包括:(1)收集电力设备的案例PRPS图谱;(2)对收集的案例PRPS图谱数据进行预处理;(3)构建第一卷积神经网络模块,并对第一卷积神经网络模块进行训练,以使其输出为案例PRPS图谱数据对应的缺陷类型;(4)基于缺陷类型构建各个缺陷类型的数据集;(5)对应各个缺陷类型分别构建各自的故障二分类子模块,其中每一个故障二分类子模块均基于第二卷积神经网络模块而构建;训练第二卷积神经网络,以使各故障二分类子模块基于案例PRPS图谱数据所得到发生故障的概率值,而输出电力设备是否发生故障的判断。
-
公开(公告)号:CN118821537A
公开(公告)日:2024-10-22
申请号:CN202410885437.1
申请日:2024-07-03
Applicant: 上海交通大学
IPC: G06F30/23 , G06F30/25 , G06F17/13 , G01R31/12 , G06F111/10
Abstract: 本发明公开了一种变压器绝缘缺陷局部放电的全过程精确仿真方法,其包括步骤:构建变压器绕组的绝缘气隙放电数值仿真模型,所述绝缘气隙放电数值仿真模型包括:阴极电极、阳极电极、设于阴极电极和阳极电极之间的第一绝缘层和第二绝缘层,以及设于第一绝缘层和第二绝缘层之间的气隙层;基于等离子放电模型对所述绝缘气隙放电数值仿真模块进行局部放电仿真,获得气隙放电过程中的电场强度、带电粒子的浓度分布;基于气隙放电过程中的电场强度、带电粒子的浓度分布,计算获得气隙放电过程中的电流脉冲;构建变压器的电磁波传播仿真模型,其包括设于变压器内部绕组上的局部放电源,根据所述电流脉冲设置局部放电源,以进行电磁波传播仿真,获取天线处检测到的电磁波信号。
-
-
-
-
-
-
-
-
-