基于元学习采样分布调整的图像小样本分类方法及系统

    公开(公告)号:CN118057469A

    公开(公告)日:2024-05-21

    申请号:CN202211450947.3

    申请日:2022-11-18

    Abstract: 本发明提供一种基于元学习采样分布调整的图像小样本分类方法及系统,包括:获取图像小样本分类用的图像数据集;将图像分类任务空间上的分类任务映射到特征空间上,得到不同分类任务的向量表示;对于某一分类任务,根据分类任务的向量表示和当前采样分布权重网络的模型参数,得到该分类任务相较于所述图像分类任务空间上的其他任务的权重;采用基于梯度的元学习方法,基于元目标与梯度方差,对元模型以及采样分布权重网络的参数进行更新,更新得到的元模型作为预训练模型;采用预训练模型进行分类。本发明能够通过动态调整任务采样分布与减小更新方差的方法改善模型泛化能力,降低实际应用时图像小样本分类的准确度的问题。

    适用于机器人自适应不同任务的双重鲁棒增强的控制方法

    公开(公告)号:CN117301068A

    公开(公告)日:2023-12-29

    申请号:CN202311501158.2

    申请日:2023-11-10

    Abstract: 本发明提供了一种适用于机器人自适应不同任务的双重鲁棒增强的控制方法,其基于元强化学习在具有不同目标和潜在动力学的机器人控制任务上采样机器人控制过程中的信号用于训练,同时考虑将各个任务上的控制信号用其他任务上的奖励函数进行重标注来增强训练数据集,采用双重鲁棒估计的方法估计重标注后信号的状态价值,最终实现机器人能够通过少量采样自适应解决具有不同目标或不同潜在动力学的机器人控制任务。本发明解决了机器人控制任务中,在不同任务场景下同时存在目标和潜在动力学不同,且存在奖励信号稀疏的问题,增强了机器人控制方法对于不同环境和任务目标的适应能力,为机器人提供了性能更好的控制方法。

    基于上下文强化学习的码率自适应方法及控制器构建方法

    公开(公告)号:CN117692644A

    公开(公告)日:2024-03-12

    申请号:CN202211030945.9

    申请日:2022-08-26

    Abstract: 本发明提供一种基于上下文强化学习的码率自适应方法及控制器构建方法,包括:构建以网络吞吐上下文信息为输入、当前网络动态隐变量表示为输出的网络动态编码器;构建以用户端信息和所述当前网络动态隐变量表示为输入、当前视频切片的最优码率版本为输出的码率自适应元策略网络;对所述网络动态编码器和码率自适应元策略网络组成的全局模型通过行为克隆方法进行预训练、利用基于互信息正则化的近端策略优化方法进行再训练;获得最优神经网络参数,基于异构的用户端,对神经网络参数微调,获得码率自适应控制器。本发明能够快速自适应异构用户的本地网络带宽环境,从而最大化用户的整体观看体验质量,提高了网络视频流传输的带宽利用率和鲁棒性。

Patent Agency Ranking