一种基于神经网络模型预测控制的路口信号灯控制方法

    公开(公告)号:CN112863179A

    公开(公告)日:2021-05-28

    申请号:CN202110031086.4

    申请日:2021-01-11

    Inventor: 肖万兴 杨博

    Abstract: 本发明公开了一种基于神经网络模型预测控制的路口信号灯控制方法,涉及路口信号灯控制领域,包括以下步骤:建立交叉路口场景,设定计划区域并定义交叉路口延迟状态;建立神经网络预测模型;获取当前时刻交叉路口状态信息,通过所述神经网络预测模型预测下一时刻交叉路口的延迟状态;在模型预测控制的框架下,定义目标函数和约束条件并进行迭代求解,获取最优控制序列并提取控制输出控制当前时刻信号灯,下一时刻再通过数据传输更新状态进行滚动优化,以达到实时控制路口信号的目的。本发明实时应用于各种场景,能有效的还原系统特征动态并且易于应用,计算负载更小更适用于路侧嵌入式设备。

    一种基于神经网络模型预测控制的路口信号灯控制方法

    公开(公告)号:CN112863179B

    公开(公告)日:2022-07-12

    申请号:CN202110031086.4

    申请日:2021-01-11

    Inventor: 肖万兴 杨博

    Abstract: 本发明公开了一种基于神经网络模型预测控制的路口信号灯控制方法,涉及路口信号灯控制领域,包括以下步骤:建立交叉路口场景,设定计划区域并定义交叉路口延迟状态;建立神经网络预测模型;获取当前时刻交叉路口状态信息,通过所述神经网络预测模型预测下一时刻交叉路口的延迟状态;在模型预测控制的框架下,定义目标函数和约束条件并进行迭代求解,获取最优控制序列并提取控制输出控制当前时刻信号灯,下一时刻再通过数据传输更新状态进行滚动优化,以达到实时控制路口信号的目的。本发明实时应用于各种场景,能有效的还原系统特征动态并且易于应用,计算负载更小更适用于路侧嵌入式设备。

Patent Agency Ranking