基于持续学习方法改进的卷积神经网络翻拍图像检测系统

    公开(公告)号:CN113706524B

    公开(公告)日:2023-11-14

    申请号:CN202111092039.7

    申请日:2021-09-17

    Abstract: 一种基于持续学习方法改进的卷积神经网络翻拍图像检测系统,包括:卷积神经网络模块、持续学习支持模块和独立数据集分类模块,其中:包含提取网络的卷积神经网络模块从以数据集序列形式输入的图像中提取出深度特征;由若干串联的子网络组成的持续学习支持模块针对不同的数据集序列生成对应的子网络参数;由若干独立的分类器组成的独立数据集分类模块对不同的数据集序列中的每一个数据集生成独立的分类器用于针对性分类并最终得到翻拍检测结果。本发明针对不同的数据集序列,对每个数据集生成独立的子网络结构用于记忆其独特的特征,最终使得整体网络在每个不同的数据集上达到较好的检测准确率。

    基于持续学习方法改进的卷积神经网络翻拍图像检测系统

    公开(公告)号:CN113706524A

    公开(公告)日:2021-11-26

    申请号:CN202111092039.7

    申请日:2021-09-17

    Abstract: 一种基于持续学习方法改进的卷积神经网络翻拍图像检测系统,包括:卷积神经网络模块、持续学习支持模块和独立数据集分类模块,其中:包含提取网络的卷积神经网络模块从以数据集序列形式输入的图像中提取出深度特征;由若干串联的子网络组成的持续学习支持模块针对不同的数据集序列生成对应的子网络参数;由若干独立的分类器组成的独立数据集分类模块对不同的数据集序列中的每一个数据集生成独立的分类器用于针对性分类并最终得到翻拍检测结果。本发明针对不同的数据集序列,对每个数据集生成独立的子网络结构用于记忆其独特的特征,最终使得整体网络在每个不同的数据集上达到较好的检测准确率。

Patent Agency Ranking