-
公开(公告)号:CN110503626B
公开(公告)日:2021-11-23
申请号:CN201910616322.1
申请日:2019-07-09
Applicant: 上海交通大学
Abstract: 本发明提供了一种基于空间‑语义显著性约束的CT图像模态对齐方法,包括:从不同的数据集中获取原始CT图像,标记并截取CT图像的肺结节区域,得到肺结节区域图像;通过不同数据集的肺结节区域图像对3D DenseNet网络进行训练,得到第一分类器和第二分类器;在循环一致生成对抗网络CycleGAN中引入3D掩模和置信度评估分数作为约束条件,得到基于空间‑语义显著性约束的循环一致生成对抗网络SSA‑CycleGAN;通过所述SSA‑CycleGAN对不同数据集的肺结节区域图像进行转换处理,得到统一模态的肺结节区域图像。本发明可以将不同模态的数据进行转换处理,从而提升肺结节检测算法的准确度。
-
公开(公告)号:CN110503626A
公开(公告)日:2019-11-26
申请号:CN201910616322.1
申请日:2019-07-09
Applicant: 上海交通大学
Abstract: 本发明提供了一种基于空间-语义显著性约束的CT图像模态对齐方法,包括:从不同的数据集中获取原始CT图像,标记并截取CT图像的肺结节区域,得到肺结节区域图像;通过不同数据集的肺结节区域图像对3D DenseNet网络进行训练,得到第一分类器和第二分类器;在循环一致生成对抗网络CycleGAN中引入3D掩模和置信度评估分数作为约束条件,得到基于空间-语义显著性约束的循环一致生成对抗网络SSA-CycleGAN;通过所述SSA-CycleGAN对不同数据集的肺结节区域图像进行转换处理,得到统一模态的肺结节区域图像。本发明可以将不同模态的数据进行转换处理,从而提升肺结节检测算法的准确度。
-