-
公开(公告)号:CN109637580B
公开(公告)日:2023-06-13
申请号:CN201811484434.8
申请日:2018-12-06
Applicant: 上海交通大学
IPC: G16B15/20
Abstract: 一种蛋白质氨基酸关联矩阵预测方法,包括:S1、组建蛋白质氨基酸关联图预测训练数据集;S2、在训练集中从蛋白质氨基酸序列中提取6种特征,并将每一个序列的6种特征合并,同时生成标签文件和权重掩模矩阵;S3、在改进的残差网络的基础上使用合并的特征、标签文件和权重掩模矩阵进行训练;S4、根据测试序列搜索同源序列列表,并得到这些同源序列的合并特征、标签文件、和权重掩模矩阵;S5、在步骤S3中得到的模型的基础上,使用步骤S4中得到的同源序列的合并特征、标签文件和权重掩模矩阵进行进一步训练;S6、根据测试氨基酸序列得到测试序列的合并特征,然后输入步骤S5中得到的预测模型进行预测。
-
公开(公告)号:CN109637580A
公开(公告)日:2019-04-16
申请号:CN201811484434.8
申请日:2018-12-06
Applicant: 上海交通大学
IPC: G16B15/20
Abstract: 一种蛋白质氨基酸关联矩阵预测方法,包括:S1、组建蛋白质氨基酸关联图预测训练数据集;S2、在训练集中从蛋白质氨基酸序列中提取6种特征,并将每一个序列的6种特征合并,同时生成标签文件和权重掩模矩阵;S3、在改进的残差网络的基础上使用合并的特征、标签文件和权重掩模矩阵进行训练;S4、根据测试序列搜索同源序列列表,并得到这些同源序列的合并特征、标签文件、和权重掩模矩阵;S5、在步骤S3中得到的模型的基础上,使用步骤S4中得到的同源序列的合并特征、标签文件和权重掩模矩阵进行进一步训练;S6、根据测试氨基酸序列得到测试序列的合并特征,然后输入步骤S5中得到的预测模型进行预测。
-