-
公开(公告)号:CN108717522A
公开(公告)日:2018-10-30
申请号:CN201810349970.0
申请日:2018-04-18
Applicant: 上海交通大学
Abstract: 本发明涉及一种基于深度学习和相关滤波的人体目标跟踪方法,该方法包括以下步骤:1)读取待跟踪视频的当前帧,利用人体检测器检测人体位置;2)读取待跟踪视频的下一帧,判断是否到达视频结尾,若是,则结束,若否,则执行步骤3);3)利用上一步检测获得的人体位置初始化相关滤波跟踪器,进行人体跟踪,持续设定时间;4)利用轻量级人体判别器判定当前跟踪目标是否为人体,若是,则记录人体位置,返回步骤2),若否,则返回步骤1)。与现有技术相比,本发明具有准确性高、实时性好等优点。
-
公开(公告)号:CN109508663B
公开(公告)日:2021-07-13
申请号:CN201811299473.0
申请日:2018-10-31
Applicant: 上海交通大学
Abstract: 本发明涉及一种基于多层次监督网络的行人重识别方法,该方法通过一多层次监督网络对行人图像提取不同语义层次的特征,进而实现行人重识别;所述多层次监督网络包括一个多层深度卷积神经网络作为主干网络和多个分类模块作为特征提取子网络;主干网络将行人图像转换为不同语义层次的特征图,各分类模块通过监督学习将主干网络提取的各层特征图分别转化为具有区分性的特征向量,所有层次上的特征向量拼接形为最终特征向量,基于该最终特征向量实现行人重识别。与现有技术相比,本发明提取行人图像不同语义层次的特征,提高了特征的区分性,并利用半分离式的监督学习方式提高了训练过程的稳定性,提升了网络准确率性能,具有重识别准确率高等优点。
-
公开(公告)号:CN109508663A
公开(公告)日:2019-03-22
申请号:CN201811299473.0
申请日:2018-10-31
Applicant: 上海交通大学
CPC classification number: G06K9/00369 , G06K9/627 , G06K9/6276
Abstract: 本发明涉及一种基于多层次监督网络的行人重识别方法,该方法通过一多层次监督网络对行人图像提取不同语义层次的特征,进而实现行人重识别;所述多层次监督网络包括一个多层深度卷积神经网络作为主干网络和多个分类模块作为特征提取子网络;主干网络将行人图像转换为不同语义层次的特征图,各分类模块通过监督学习将主干网络提取的各层特征图分别转化为具有区分性的特征向量,所有层次上的特征向量拼接形为最终特征向量,基于该最终特征向量实现行人重识别。与现有技术相比,本发明提取行人图像不同语义层次的特征,提高了特征的区分性,并利用半分离式的监督学习方式提高了训练过程的稳定性,提升了网络准确率性能,具有重识别准确率高等优点。
-
-