-
公开(公告)号:CN102982350A
公开(公告)日:2013-03-20
申请号:CN201210455140.9
申请日:2012-11-13
Applicant: 上海交通大学
IPC: G06K9/66
Abstract: 本发明提供了一种基于颜色和梯度直方图的台标检测方法,步骤:构建台标样本库,通过提取库中样本的HOG特征来训练SVM分类器;提取待测台标的颜色特征,确定其至多前三种主颜色的参数范围与面积比例;通过颜色匹配算法,在视频帧中搜索与待测台标颜色组成相同的区域,从而得到台标可能出现的待测区域;将待测区域进行基于仿射变换与最小外接矩形的图像矫正;提取待测区域中的HOG特征,通过训练好的分类器判断是否存在待测台标。经过严格的实验证明,该台标识别方法能够准确的、近实时的识别视频中台标(包括话筒上,背景中等)。
-
-
公开(公告)号:CN112862799A
公开(公告)日:2021-05-28
申请号:CN202110206510.4
申请日:2021-02-24
Applicant: 上海交通大学
Abstract: 本发明提供了一种基于图像属性恢复的图像异常检测方法和系统,包括:图像属性移除步骤:对待检测的图像,利用图像灰度化、图像随机旋转的图像属性移除方法进行图像属性移除;图像特征提取步骤:对得到的属性缺失图像使用深度卷积神经网络提取图像的高维特征;图像属性恢复步骤:对图像的高维特征使用深度卷积神经网络进行图像属性恢复,得到属性恢复图像;恢复图像对齐步骤:对属性恢复图像和待检测的图像使用均方误差损失函数进行自监督学习;图像异常评定步骤:对损失函数结果和属性恢复图像使用加权平均函数进行图像异常评定。本发明能够引导深度网络更加注重于学习与图像属性相关的高级语义信息,从而在异常检测任务上取得较好的性能。
-
公开(公告)号:CN102982350B
公开(公告)日:2015-10-28
申请号:CN201210455140.9
申请日:2012-11-13
Applicant: 上海交通大学
IPC: G06K9/66
Abstract: 本发明提供了一种基于颜色和梯度直方图的台标检测方法,步骤:构建台标样本库,通过提取库中样本的HOG特征来训练SVM分类器;提取待测台标的颜色特征,确定其至多前三种主颜色的参数范围与面积比例;通过颜色匹配算法,在视频帧中搜索与待测台标颜色组成相同的区域,从而得到台标可能出现的待测区域;将待测区域进行基于仿射变换与最小外接矩形的图像矫正;提取待测区域中的HOG特征,通过训练好的分类器判断是否存在待测台标。经过严格的实验证明,该台标识别方法能够准确的、近实时的识别视频中台标(包括话筒上,背景中等)。
-
-
-