一种基于多维度数据学习的金融机构潜在客户推荐方法

    公开(公告)号:CN112256964A

    公开(公告)日:2021-01-22

    申请号:CN202011140311.X

    申请日:2020-10-22

    Abstract: 本发明涉及一种基于多维度数据学习的金融机构潜在客户推荐方法,属于数据处理技术领域。通过数据获取模块获取初始样本数据,根据预设的数据结构将所述样本数据建立初始数据集并存储至服务器主体中;数据处理模块对数据进行清洗,去除唯一属性,进行缺失值处理和异常值处理,最后对数据标准化,保证数据集中的数据全都真实有效;数据筛选模块对所述数据集进行筛选,用PCA对数据降维,方便之后数据的可视化;推荐模型模块先获取上述经过处理之后的多维数据,然后将多维数据送入推荐模型中进行数据分析得到分析结果,并为每个客户进行等级预测。本发明在保证数据分析速度时同时兼顾精度,提高数据分析的效率。

    一种零存整取模式下存户存款贡献度评估方法

    公开(公告)号:CN112215704A

    公开(公告)日:2021-01-12

    申请号:CN202011141781.8

    申请日:2020-10-22

    Abstract: 本发明涉及一种零存整取模式下存户存款贡献度评估方法,属于数据处理技术领域。该方法包括:通过对样本数据进行筛选以及清洗,对零存整取模式下存户存款异常数据进行过滤,得到数据集;获取用户特征数据,用户特征数据包括:存户历史缴款信息;将训练数据集输入模型进行训练分析,得到评估存户存款贡献度模型,将测试数据集用户特征数据输入至已训练的模型进行预测操作,以输出预测信息,根据预测信息生成存户存款贡献度评估信息,由此大大提高了对存户存款贡献度评估的准确度。

Patent Agency Ranking