基于生成对抗网络的恶意代码检测方法

    公开(公告)号:CN111832019B

    公开(公告)日:2024-02-23

    申请号:CN202010524261.9

    申请日:2020-06-10

    Abstract: 本发明涉及一种基于生成对抗网络的恶意代码检测方法,包括:采集恶意代码样本集和良性样本集;提取恶意代码样本集和良性样本集中每一样本的静态特征和动态特征;将每一样本的静态特征和动态特征进行组合,得到每一样本组合特征;将所有样本组合特征输入预先设置的生成器G中,生成对抗样本集;将对抗样本集输入预先设置的判别器D中,判别每个对抗样本是否为恶意代码,并标记是否为恶意代码的标签,再将附带标签的对抗样本集反馈到生成器G中,持续优化所述生成器G;将附带标签的对抗样本集作为训练集进行训练,得到恶意代码分类模型;基于恶意代码分类模型检测待测样本是否为恶意代码。本发明提高了恶意代码检测的准确度和效

    面向加密异常流量识别的数据处理方法

    公开(公告)号:CN115314240A

    公开(公告)日:2022-11-08

    申请号:CN202210712853.2

    申请日:2022-06-22

    Abstract: 本发明公开了一种面向加密异常流量识别的数据处理方法,所述方法包括如下步骤:获取网络中的具有标签的加密流量数据,分别将不同标签的所述加密流量数据切分为多个会话单元,其中,每个会话单元包括若干数据包;根据每个会话单元所包括的数据包生成该会话单元相应的流量图像,每个流量图像包括若干与所述数据包一一对应的图像元素,并将所有会话单元的流量图像组成第一图像集;从所述第一图像集中随机选取至少一部分的流量图像,对其中每个流量图像的至少一部分图像元素进行图形处理,并得到第二图像集,以用于根据监督式机器学习方法进行加密异常流量识别。本发明能够有效扩充用于机器学习模型的训练数据集,实现数据增强。

Patent Agency Ranking