一种含金属氢化物无铅易切削黄铜及其制备方法

    公开(公告)号:CN108588472B

    公开(公告)日:2020-07-14

    申请号:CN201810453590.1

    申请日:2018-05-14

    Applicant: 南昌大学

    Abstract: 一种含金属氢化物无铅易切削黄铜及其制备方法,其特征是在于包含1~15wt%金属氢化物。制备方法按以下步骤:在一定氢气条件下,使合金中可氢化的合金元素吸氢生成金属氢化物,最终得到含金属氢化物无铅易切削黄铜,其中原材料黄铜合金中至少有一种可氢化合金元素,要求可氢化合金元素能够与基体合金元素形成均匀的合金或固溶体。本发明提出的含金属氢化物无铅易切削黄铜的制备方法可用于规模化生产,得到的含金属氢化物无铅易切削黄铜适用于金属加工领域,尤其改善了黄铜的切削加工性能;该方法工艺简单,所需的原料储备丰富,得到的含金属氢化物无铅易切削黄铜没有污染性,符合环保要求。

    一种利用有氧烧结制备石墨烯/铜复合材料的方法

    公开(公告)号:CN107201535B

    公开(公告)日:2018-12-04

    申请号:CN201710247094.6

    申请日:2017-04-17

    Applicant: 南昌大学

    Abstract: 一种利用有氧烧结制备石墨烯/铜复合材料的方法,利用电沉积法制备石墨烯/铜复合粉,以电解铜片为阳极,铜箔为阴极,可溶性铜盐、可溶性镍盐及氧化石墨烯的混合溶液为电解液,通直流电进行电沉积,保持一定的电流密度一段时间,阴极上沉积所得产物即为石墨烯/铜复合粉;用无水乙醇清洗产物,除去残留杂质,再放入真空干燥箱中进行烘干,研磨,压成石墨烯/铜复合块体;在气氛烧结炉中,在氧气和载气保护下,控制氧分压,烧结石墨烯/铜复合块体,得到石墨烯/铜复合材料。本发明提高石墨烯与铜基体的结合性能,提高石墨烯和铜基体的界面结合性能,工艺简单,操作容易,成本低廉,无特殊设备要求。

    一种利用有氧烧结制备石墨烯/铜复合材料的方法

    公开(公告)号:CN107201535A

    公开(公告)日:2017-09-26

    申请号:CN201710247094.6

    申请日:2017-04-17

    Applicant: 南昌大学

    CPC classification number: C25C5/02 B22F1/0003 C22C1/05 C22C9/00 C22C32/0084

    Abstract: 一种利用有氧烧结制备石墨烯/铜复合材料的方法,利用电沉积法制备石墨烯/铜复合粉,以电解铜片为阳极,铜箔为阴极,可溶性铜盐、可溶性镍盐及氧化石墨烯的混合溶液为电解液,通直流电进行电沉积,保持一定的电流密度一段时间,阴极上沉积所得产物即为石墨烯/铜复合粉;用无水乙醇清洗产物,除去残留杂质,再放入真空干燥箱中进行烘干,研磨,压成石墨烯/铜复合块体;在气氛烧结炉中,在氧气和载气保护下,控制氧分压,烧结石墨烯/铜复合块体,得到石墨烯/铜复合材料。本发明提高石墨烯与铜基体的结合性能,提高石墨烯和铜基体的界面结合性能,工艺简单,操作容易,成本低廉,无特殊设备要求。

    一种纳米钨粉的制备方法
    84.
    发明授权

    公开(公告)号:CN103302308B

    公开(公告)日:2015-07-01

    申请号:CN201310236444.0

    申请日:2013-06-17

    Applicant: 南昌大学

    Abstract: 一种纳米钨粉的制备方法,(1)将偏钨酸铵、硝酸铬和水溶性碳源物质,溶于加热的去离子水中,电动搅拌使原料充分混合,其中水溶性碳源物质的重量百分比为10~30%,硝酸铬为0.5~2%,去离子水的温度≥70℃;原料混合均匀后,喷雾干燥,得到前驱体粉末;(2)将步骤(1)中的前驱体粉末放入管式气氛炉中进行碳辅助氢还原,还原温度为710~850oC,升温速率10~15oC/min,时间为2~5h,还原结束后,在粉末出炉前用惰性气体进行钝化处理。本发明制备的钨粉粒径为40~70nm,团聚不严重,破碎后可得到无团聚的纳米钨粉,不会对环境造成污染,可以有效地推进纳米晶WC-Co硬质合金发展。

    一种纳米碳化钒磁流体及其制备方法

    公开(公告)号:CN103606428A

    公开(公告)日:2014-02-26

    申请号:CN201310486724.7

    申请日:2013-10-17

    Applicant: 南昌大学

    Abstract: 一种纳米碳化钒磁流体及其制备方法,采用粒径为30~60nm的高能球磨纳米磁性碳化钒作为磁流体中的磁性微粒,采用水溶液配料法制备前驱体,钒氧化物直接碳化法制备纳米碳化钒;高能球磨后制得纳米磁性碳化钒,然后将纳米磁性碳化钒微粒预分散于基液中,表面改性后得到纳米碳化钒磁流体。本发明制备的纳米碳化钒粒径为30~60nm,而且团聚并不严重,经高能球磨后具有铁磁性,饱和磁化强度为48.02emu/g,饱和磁场强度4000Oe,表面改性后纳米磁性碳化钒微粒在基液中具有很好的分散性和稳定性,磁流体饱和磁化强度6.87emu/g,可应用于磁流体密封、磁流体润滑和磁流体阻尼等,并可应用于强氧化性等特殊的环境下。

    一种氮化钛-铁金属陶瓷的制备方法

    公开(公告)号:CN103433488A

    公开(公告)日:2013-12-11

    申请号:CN201310348293.8

    申请日:2013-08-12

    Applicant: 南昌大学

    Abstract: 一种氮化钛-铁金属陶瓷的制备方法,先用真空熔炼的方法制备钛-铁(Ti-Fe)合金铸锭,使铁在钛中以固溶和钛铁TiFe中间相的形式存在,然后对钛-铁(Ti-Fe)合金铸锭进行氢化脆化、球磨破碎、脱氢和氮化处理,得到氮化钛-铁(TiN-Fe)金属陶瓷复合粉末,将复合粉末压胚后烧结得到氮化钛-铁(TiN-Fe)金属陶瓷材料。本发明制备的TiN-Fe金属陶瓷复合粉末由TiN和Fe两相组成,粉末粒度均匀、流动性好,经压胚后烧结得到的TiN-Fe块体金属陶瓷材料各相分布均匀、致密度较高,其平均显微维氏硬度达到了1023HV。

Patent Agency Ranking