-
公开(公告)号:CN113113576A
公开(公告)日:2021-07-13
申请号:CN202110224558.8
申请日:2021-03-01
Applicant: 三峡大学
IPC: H01M4/36 , H01M4/38 , H01M4/48 , H01M4/62 , H01M10/054 , C01B32/00 , B22F9/20 , B82Y40/00 , B82Y30/00
Abstract: 本发明提供了一种Bi/SnOx@C(x为0、1、2中的一种或多种)钠离子电池复合电极材料的制备方法,具体过程为合成Bi/SnOx(x为0、1、2中的一种或多种)超细纳米颗粒且包覆于三维多孔碳中。氯化铋为铋源,氯化亚锡为锡源,柠檬酸为碳源,氯化钠为模板,溶解后烘干,高温碳化分解,得到碳包覆的Bi/SnOx复合材料。该方法制得的复合材料作为钠离子电池负极材料具有优异的循环稳定性和高比容量的特点。这种Bi/SnOx@C材料在1A g‑1电流密度下循环大约500圈后仍具有125 mAh g‑1的比容量。
-
公开(公告)号:CN112708927A
公开(公告)日:2021-04-27
申请号:CN202011505651.8
申请日:2020-12-18
Applicant: 三峡大学
Abstract: 本发明提供了一种钼酸锰单晶微米棒的制备及其碳包覆方法。具体过程是:将乙酸锰和钼酸铵按比例配制成混合溶液,通过共沉淀法形成钼酸锰前驱体。再将钼酸锰前驱体分散到三(羟甲基)氨基甲烷溶液中,加入盐酸酸多巴胺进行包覆,高温煅烧后形成碳包覆的钼酸锰单晶微米棒。其作为钠离子电池负极材料,相较于未进行碳包覆的钼酸锰微米棒,表现出较好的电化学性能。将制备得到的MnMoO4‑1@C负极材料与磷酸钒钠正极材料组装成钠离子全电池,全电池首次库伦效率高达78.8%,且放电比容量高达186.7 mAh g‑1。
-
公开(公告)号:CN112499631A
公开(公告)日:2021-03-16
申请号:CN202011432356.4
申请日:2020-12-09
Applicant: 三峡大学
IPC: C01B32/914 , C01B32/318 , H01M4/36 , H01M4/583 , H01M4/587 , H01M10/0525
Abstract: 本发明提供的一种Fe3C/C复合材料,具体为氮硫双掺杂碳包覆的Fe3C/C复合材料制备方法,三聚氰胺为氮源,硫脲为硫源,硝酸铁为铁源,葡萄糖为碳源,研磨均匀后干燥,高温碳化分解,获得氮硫共掺杂碳包覆的Fe3C复合材料。经该方法制得的复合材料作为锂离子电池的负极材料,具有优异的循环稳定性、高比容量的特点。这种Fe3C/C复合材料在4 A g‑1电流密度下具有260.9 mAh g‑1比容量,且在1 A g‑1时经循环400圈后仍具有649.5 mA h g‑1的比容量。经筛选,这种Fe3C/C复合材料与商业三元LiNi1/3Co1/3MnO1/3正极材料组装成的全电池在0.2 A g‑1电流密度下经过100圈循环后具有271.1 mAh g‑1比容量,具有优异的电化学性能。
-
公开(公告)号:CN111592045A
公开(公告)日:2020-08-28
申请号:CN202010393620.1
申请日:2020-05-11
Applicant: 三峡大学
IPC: C01G45/12 , H01M4/505 , H01M10/054
Abstract: 本发明提供了一种KxMnO2的制备方法。制备得到的KxMnO2块体尺寸为0.5-4μm。所述KxMnO2以四水合氯化锰、碳酸钠和氢氧化钾为锰源和钾源,通过共沉淀、水热反应及后续煅烧过程制备KxMnO2粉末。测试结果发现,用4M浓度的氢氧化钾处理前驱体制备得到的KXMnO2具有最好的电化学性能。以KxMnO2为钾离子电池正极材料组装的钾离子半电池,电化学性能较好,在钾离子电池领域具有潜在应用价值。
-
公开(公告)号:CN107623118B
公开(公告)日:2020-07-07
申请号:CN201710937472.3
申请日:2017-09-30
Applicant: 三峡大学
IPC: H01M4/36 , H01M4/587 , H01M4/62 , H01M10/0525
Abstract: 本发明公开了一种首次库伦效率提高的磷掺杂多孔碳负极材料及其制备方法,属于电化学和新能源材料领域。本发明直接以单质红磷为磷源,制备磷掺杂多孔碳负极材料,首先将面粉等有机碳源与红磷均匀混合,置于充满保护气氛的密封罐中煅烧,有机碳源初步碳化形成多孔碳,红磷气化掺入碳材料晶格中,扩大碳材料层间距,同时也引入少量单质磷;为了去除单质磷和进一步提高碳化程度及导电性,将磷掺杂多孔碳材料置于惰性气氛管式炉中进一步煅烧。该法制备的磷掺杂多孔碳材料作为锂离子电池负极材料,与面粉等有机碳源直接碳化得到的多孔碳相比,首次库伦效率显著提高,同时表现出较高的可逆容量和优异的循环稳定性。
-
公开(公告)号:CN107317017B
公开(公告)日:2020-06-02
申请号:CN201710557547.5
申请日:2017-07-10
Applicant: 三峡大学
IPC: H01M4/36 , H01M4/58 , H01M4/136 , H01M4/1397 , H01M10/054
Abstract: 本发明提供一种中间液相方法制备碳复合磷酸钒钠无粘结剂正极,具体步骤是称取钠源、钒源于小烧杯中,添加去离子水,搅拌30min至其完全溶解,将其转移至水热内胆中,添加去离子水至内胆体积的80%,在100~180℃的鼓风烘箱中水热12~48h。称取磷源及有机碳源于烧杯中,加入去离子水,搅拌20min至其完全溶解,之后将自然冷却后的中间相液体缓慢滴加到溶有磷源和有机碳源的烧杯中,搅拌20min至溶液变成橙黄色,加热浓缩至一定体积。之后将碳基体浸泡在液相前驱体中1‑4小时,并在80℃的鼓风烘箱中于24h烘干。将烘干后的碳基体在氮气气氛下350℃预烧2~6h,在650~850℃下煅烧6~12h,得到无粘结剂Na3V2(PO4)3/C电极。以其作为钠离子电池正极显示出较好的电化学性能。
-
公开(公告)号:CN111071998A
公开(公告)日:2020-04-28
申请号:CN201911414300.3
申请日:2019-12-31
Applicant: 三峡大学
IPC: C01B21/06 , C01B32/05 , H01M4/58 , H01M4/62 , H01M10/0525
Abstract: 本发明提供一种GaN多孔微米方块/碳复合材料的制备方法。其具体操作如下:称取一定量Ga(NO3)3、C6H12N4、C6H12O6和氧化石墨烯以质量比为100-150:150-200:0-7:2-4添加去离子水搅拌20-40min至其均匀分散;将悬浮液转移到水热反应釜内衬中,在鼓风烘箱中120-180℃反应12-36h后,自然冷却至室温;将产物冷冻干燥后直接在氨气下退火(温度为650-850℃,时间为5-10h)得到GaN多孔微米方块/碳复合材料。本发明将GaN多孔微米方块/碳复合材料用作锂离子电池负极,显示了良好电化学性能。
-
公开(公告)号:CN108134075B
公开(公告)日:2020-04-24
申请号:CN201711287104.5
申请日:2017-12-07
Applicant: 三峡大学
IPC: H01M4/485
Abstract: 本发明提供了一种高振实密度的钛酸钠微球及其在钠离子电池中的应用。具体是将一定量钛酸四正丁酯溶解在乙酸溶液中形成乳白色混浊液,经过水热处理后在空气中退火得到TiO2片球。为了得到高振实密度的Na2Ti3O7微球,我们将上述TiO2微球置于高浓度的NaOH溶液中水热反应后于500℃下退火得到高振实密度的Na2Ti3O7微球,通过振实密度测试仪测得其振实密度高达1 g cm‑3。以这种高振实密度的Na2Ti3O7微球作为钠离子电池的负极材料具有优异的电化学性能,在3 C倍率下依然具有高达85 mAh g‑1的比容量,经过20次循环后其容量保持率为84.1%。
-
公开(公告)号:CN110600734A
公开(公告)日:2019-12-20
申请号:CN201910859463.6
申请日:2019-09-11
Applicant: 三峡大学
IPC: H01M4/58 , H01M10/054
Abstract: 本发明公开了一种三元WxMo1-xS2钠离子电池负极材料及其制备方法,属于电化学和新能源材料领域。该三元WxMo1-xS2材料为典型的二维层状结构,具有较大的内层间距。W掺杂到MoS2晶格,造成了材料结构畸变和层间距的显著扩大,大大降低了Na+的扩散阻力。该材料作为钠离子电池负极材料,表现出较高的可逆比容量和优异的循环稳定性能。本发明是通过氯化钨、钼酸铵和硫代乙酰胺一步水热法得到三元WxMo1-xS2材料,铵根离子水热过程产生氨气,使WxMo1-xS2内层间距扩大。该材料与二硫化钼和二硫化钨相比,内层间距显著扩大,扩大的内层间距有利于钠离子的脱出/嵌入,显著改善了材料作为钠离子电池负极时的比容量和循环稳定性能。
-
公开(公告)号:CN107492656B
公开(公告)日:2019-12-06
申请号:CN201710557397.8
申请日:2017-07-10
Applicant: 三峡大学
Abstract: 本发明提供一种中间液相方法制备碳复合氟磷酸钒钠自支撑正极,具体步骤是称取钠源、钒源于小烧杯中,添加去离子水,搅拌20min至其完全溶解,将其转移至水热内胆中,添加去离子水至内胆体积的80%,在100~180℃的鼓风烘箱中水热12~48h。称取磷源及有机碳源于烧杯中,加入去离子水,搅拌20min至其完全溶解,之后将自然冷却后的中间相液体缓慢滴加到溶有磷源和有机碳源的烧杯中,搅拌20min至溶液变成橙黄色,加热浓缩至一定体积。之后将碳基体浸泡在液相前驱体中1‑4小时,并在70℃的鼓风烘箱中于24h烘干。将浸泡后的碳基体在氮气气氛下350℃预烧2~6h,在650~850℃下煅烧6~12h,自然冷却后得到自支撑NaVPO4F/C电极,以其作为钠离子电池正极显示出较好的电化学性能。
-
-
-
-
-
-
-
-
-