-
公开(公告)号:CN105608478A
公开(公告)日:2016-05-25
申请号:CN201610192000.5
申请日:2016-03-30
Applicant: 苏州大学
IPC: G06K9/62
Abstract: 发明公开了一种图像特征提取与分类联合方法及其系统,首先根据训练样本间的相似性,构造近邻图,并计算重构系数矩阵。进而引入基于核范数度量的近邻重构错误最小化的非线性流形学习,对训练图像样本进行低维流形特征学习,得到一个可获取样本低维流形特征的线性投影矩阵;再利用所述训练样本低维特征,最小化L2,1-范数正则化的分类错误,完成鲁棒稀疏分类器学习,输出一个最优分类器,从而对测试样本进行特征提取和分类。与现有技术相比,本发明通过采用核范数度量和L2,1-范数正则化的联合问题,有效提高了提取特征的描述性与分类准确率。
-
公开(公告)号:CN105528620A
公开(公告)日:2016-04-27
申请号:CN201510918300.2
申请日:2015-12-11
Applicant: 苏州大学
IPC: G06K9/62
Abstract: 本发明公开了一种联合鲁棒主成分特征学习与视觉分类方法及系统,通过将鲁棒主成分特征学习、编码错误和基于主成分特征的分类错误集成到一个统一的最小化框架,可同时进行联合低秩与稀疏特征提取和数据纠错,且可确保得到的特征对于分类是最优的。为了得到描述性更强的鲁棒特征,同时考虑数据的低秩与稀疏特性,同时通过将一个投影嵌入的特征进行低秩和L1-范数最小化,确保提取的特征满足低秩与稀疏特性。最终得到一个线性投影矩阵P和一个线性分类器W。P可直接提取待测样本的联合特征,进而将特征向W进行映射,可得到其软类别标签,通过软类别标签中最大值对应的位置,得到最准确的视觉分类结果。此外,通过得到P和W,有效提升了测试过程的可拓展性。
-
公开(公告)号:CN104835148A
公开(公告)日:2015-08-12
申请号:CN201510181368.7
申请日:2015-04-16
Applicant: 苏州大学
IPC: G06T7/00
Abstract: 本发明公开了一种视网膜囊状水肿的自动分割方法,包括预处理:去除OCT图像的散斑噪声,采用三维图搜索的方法将视网膜分为11层;排除黄斑裂孔及血管阴影,得到第1层至第7层内视网膜即感兴趣区域;粗糙分割:在感兴趣区域提取23个纹理特征,采用主成分分析法进行特征选择,并使用Adaboost分类器训练,得到粗糙分割结果;精确分割:在粗糙分割结果上使用数学形态学算法得到图割算法所需的背景点和前景点,训练图割算法的参数,用全自动的图割算法得到精确分割结果。本发明在黄斑裂孔和囊样水肿两种病症同时存在时,依然可以实现囊样水肿的精确分割。
-
公开(公告)号:CN104408693A
公开(公告)日:2015-03-11
申请号:CN201410698813.2
申请日:2014-11-27
Applicant: 苏州大学
Abstract: 本发明公开了一种彩色图像重构与识别方法及系统,利用无标签的彩色图像训练样本进行彩色散度矩阵构造,对彩色图像进行二维主成分学习,通过一个特征分解问题得到投影矩阵,完成特征降维,将降维后的数据输入最近邻分类器,再将测试样本嵌入到投影空间进行特征提取,输入至最近邻分类器进行相似性度量,输出测试样本的类别,得到最准确的彩色图像识别结果。通过优化一个无监督的特征问题实现彩色图像特征的直接降维,降低了时间复杂性,使基于彩色图像特征提取的识别过程快速,同时可有效保持图像像素中包含的重要彩色信息和拓扑结构。此外,投影方向可有效用于彩色图像重构,通过选取一定数量的投影向量,可得到清晰的彩色图像重构结果。
-
公开(公告)号:CN102789490B
公开(公告)日:2014-11-05
申请号:CN201210228899.3
申请日:2012-07-04
Applicant: 苏州大学
IPC: G06F17/30
Abstract: 本发明提供了一种数据可视化方法,包括:获取第一数据集并计算所述第一数据集中每个数据的可视化坐标,得到与所述第一数据集对应的可视化坐标集,其中,所述第一数据集包括n个D维数据,n为大于等于1的正整数,D为大于等于1的正整数;获取第二数据集并利用稀疏矩阵求加权值的方法增量式地处理所述第二数据集中的每个数据,得到所述第二数据集中每个数据的可视化坐标,并将每次处理得到的每个数据的可视化坐标加入到与所述第一数据集对应的可视化坐标集中,其中,N为大于n的正整数;输出与所述第一数据集对应的可视化坐标集。本发明还提供了一种数据可视化系统。本发明提供的数据可视化方法和系统提高了数据处理速度。
-
公开(公告)号:CN103955944A
公开(公告)日:2014-07-30
申请号:CN201410218968.1
申请日:2014-05-22
Applicant: 苏州大学
IPC: G06T7/00
Abstract: 本发明提供一种图像边缘检测方法和装置,通过本发明实施例提供的图像边缘检测方法,在获取M个初始设定的窗口Ni对应的一阶边缘检测算子和二阶边缘检测算子后,可以利用M个一阶边缘检测算子得到一阶边缘检测图像以及利用M个二阶边缘检测算子得到二阶边缘检测图像;然后将一阶边缘检测图像和二阶边缘检测图像进行逻辑或运算,得到边缘检测图像。与现有技术相比,本发明实施例提供的图像边缘检测方法提出了同时基于一阶边缘检测算子和二阶边缘检测算子检测图像边缘的方法。并且经过发明人多次实验证明,将一阶边缘检测图像和二阶边缘检测图像进行逻辑或运算后,边缘检测图像中的噪声降低,从而提高边缘检测图像的抗噪能力。
-
公开(公告)号:CN103955681A
公开(公告)日:2014-07-30
申请号:CN201410219735.3
申请日:2014-05-22
Applicant: 苏州大学
IPC: G06K9/00
Abstract: 本申请提供了一种人脸识别方法及系统,所述方法包括:获取输入的人脸图像;使用滤波模块对所述人脸图像进行滤波,得到待识别人脸图像;利用最近邻分类模块在图像数据库中查找与所述待识别人脸图像相匹配的模板图像,得到匹配模板图像,所述模板图像为使用所述滤波模块对原始模板图像进行滤波后得到的图像;确定所述匹配模板图像的类别为所述人脸图像的类别。由于未对输入的人脸图像进行降维操作,也无需对图像数据库中的模板图像进行降维操作,直接进行滤波的特征变换,因此缩减了识别过程,从而提高了对人脸图像进行识别的效率。
-
公开(公告)号:CN102722713B
公开(公告)日:2014-07-16
申请号:CN201210041116.0
申请日:2012-02-22
Applicant: 苏州大学
IPC: G06K9/62
Abstract: 本发明实施例提供一种基于李群结构数据的手写体数字识别方法及系统。所述方法从原始的手写体数字图像数据中提取对应的李群结构数据,通过构造矩阵高斯核函数,利用支持向量机算法训练出分类器模型,将待测手写体数字图像数据对应的李群结构数据,分别输入到训练得到的分类器模型中,得到对应的数字类别,从而对待测手写体数字图像数据对应的李群结构数据进行非线性特征的捕获,更好的实现了手写体数字识别。
-
公开(公告)号:CN103886310A
公开(公告)日:2014-06-25
申请号:CN201410163058.8
申请日:2014-04-22
Applicant: 苏州大学
Abstract: 本发明提供一种基于多个1类支持向量机的人脸相似性识别方法及系统。所述方法包括以下步骤。S1、对现有的人脸训练样本集进行处理,获得差样本对,并构造差样本对训练集。S2、对所述差样本对训练集按类别分别进行训练学习,获得1类SVM模型系数,并通过所述模型系数获得超球体半径rc。S3、获取任意两个测试样本的测试差样本对,并根据所述测试差样本对及超球体半径计算相似性判别模型,以判断所述任意两个测试样本的相似性。
-
公开(公告)号:CN103870719A
公开(公告)日:2014-06-18
申请号:CN201410140707.2
申请日:2014-04-09
Applicant: 苏州大学
IPC: G06F19/10
Abstract: 本申请公开了一种启动子识别方法,通过对多个样本基因序列进行胞嘧啶、鸟嘌呤CG偏好特征的统计,将多个样本基因序列分为两类,针对每一类样本基因序列分别执行以下步骤:分别提取其中每一个样本基因序列的刚性特征、CpG岛特征和四联体组成成分特征,并构建对应的分类器来对样本基因序列进行启动子识别判断,对识别的非启动子序列提取其五联体组成成分特征并构成五联体分类器,再次进行启动子识别判断,并在识别结果满足预设条件时,确定当前样本基因序列为启动子序列,否则为非启动子序列。本申请充分考虑了基因的刚性特征、CpG岛特征和组成成分特征,通过分级识别,最终给出的启动子识别结果准确率更高。
-
-
-
-
-
-
-
-
-