一种声子晶体及薄膜压电声波传感器

    公开(公告)号:CN110277082B

    公开(公告)日:2021-03-23

    申请号:CN201910420968.2

    申请日:2019-05-20

    Abstract: 本发明公开了一种薄膜压电声波传感器,包括:层叠设置的衬底层、地电极层和压电层,压电层远离地电极层的一侧设置有至少一个换能器;换能器的两侧分别设置有至少形成于压电层的声子晶体,薄膜压电声波传感器的谐振频率位于声子晶体的带隙内。上述的薄膜压电声波传感器,将声子晶体至少设置于压电层上,使压电层机械振动的稳定性提高,对声波反射率提高,声波传输的能量损耗降低,传感器品质因数提升。本发明公开了一种声子晶体,包括基体和形成于基体上的散射体,基体由至少两层介质层层叠形成,任意一层介质层的材料与其他介质层不同。上述声子晶体能有效减少声波能量损耗,应用于薄膜压电声波传感器中能够有效提高传感器的品质因数。

    一种样品转移装置、转移系统及方法

    公开(公告)号:CN112221546A

    公开(公告)日:2021-01-15

    申请号:CN202010880487.2

    申请日:2020-08-27

    Abstract: 本发明涉及核酸样品检测的技术领域,具体涉及一种样品的转移装置及进样系统。包括:样本架,具有至少两个安装通道,所述安装通道一一对应地供底部上设有可刺破的第一封膜的样品管安装;第一刺破机构,其具有位于所述样本架底部上的至少两个第一刺破部,至少一个第一刺破部对应于一个所述安装通道;第一驱动部件,可与样本架和所述第一刺破机构中的一个连接,受驱动力的驱动而带动样本架或所述第一刺破机构,朝向靠近样本架和所述第一刺破机构的另一个移动,而使所述第一刺破部与所述第一封膜由分离的第一位置切换至第一封膜被刺破的第二位置。该装置可同时刺破多个样品管,避免了样品管旋盖,从而达到节约时间提升提高效率的目的。

    一种确定凝血时间的方法及装置

    公开(公告)号:CN107991385B

    公开(公告)日:2020-05-22

    申请号:CN201711212535.5

    申请日:2017-11-28

    Abstract: 本发明公开了一种确定凝血时间的方法及装置,其中所述方法包括:在待测血样被加入凝血试剂时,实时获取Lamb波传感器输出信号的频率,其中所述待测血样放置在所述Lamb波传感器的叉指电极一侧表面;判断实时获取的相邻的两个Lamb波频率之间的差值是否小于预定值;当实时获取的相邻的两个Lamb波频率之间的差值小于预定值时,获取所经过的时间,将所经过的时间作为凝血时间。本发明创造性地采用Lamb波传感器检测凝血时间,其检测结果不易受光照等环境因素的影响,检测结果较为准确;由于Lamb波传感器较为小巧,并且无需增加辅助的检测环境维持装置(例如现有技术中用于遮挡环境光线的屏障),因此整个凝血时间检测装置也可以较为小巧,便于携带和收纳。

    一种基于压电声波传感器的单分子测序方法

    公开(公告)号:CN111088331A

    公开(公告)日:2020-05-01

    申请号:CN201911294267.5

    申请日:2019-12-16

    Abstract: 本发明公开了一种基于压电声波传感器的单分子测序方法,包括以下步骤:S1.在压电声波传感器表面修饰DNA聚合酶;S2.DNA模板单链小片段驱动进样;S3.基于质量放大原理在核苷酸磷酸链的活性端修饰磁珠;S4.修饰好的核苷酸进样;S5.在声波传感器微孔另一侧施加磁场;S6.传感器表面进行洗脱:S7.测试声波传感器的频率信号f1;S8.采用DNA聚合酶切除核苷酸磷酸链的活性端修饰的磁珠:S9.测试声波传感器的频率信号f2;计算f1与f2的差值,确定DNA模板单链的碱基种类;S10.清洗流道;重复上述步骤S3-S10,对微孔中的DNA模板单链进行连续测序;其提高了检测灵敏度,降低了测序成本。

    单分子DNA荧光信号检测系统及阵列微孔的检测方法

    公开(公告)号:CN111088144A

    公开(公告)日:2020-05-01

    申请号:CN201911379948.1

    申请日:2019-12-27

    Abstract: 本发明提供单分子DNA荧光信号检测系统,包括阵列芯片与光学检测结构;阵列芯片上阵列若干阵列微孔与集成若干发光件,所述光学检测结构采集所述荧光信号并将其转换成数字信号以实现单分子DNA检测。本发明还涉及一种阵列微孔的检测方法。本发明通过将发光件集成到微孔阵列当中,避免采用零模波导照明的方式,增加激发光的利用率,提高荧光激发效率,增强荧光信号,同时相比于现有的底部为透明材料的零模波导的盲孔结构,减少光信号通过光学元件的损耗,提高荧光信号检测识别的准确率;同时避免零模波导孔的尺寸限制,可应用更高通量的测序微孔阵列芯片,实现单分子荧光测序。

    高通量单细胞转录组与基因突变整合分析一体化装置

    公开(公告)号:CN110951580A

    公开(公告)日:2020-04-03

    申请号:CN201910932615.0

    申请日:2019-09-29

    Abstract: 本发明公开了一种高通量单细胞转录组与基因突变整合分析一体化装置,包括高通量单细胞编码芯片和整合分析装置;所述整合分析装置包括壳体以及设置在所述壳体内的温控热循环模块、荧光成像模块和数据存储分析模块,所述荧光成像模块包括光源组件、显微物镜、荧光分光组件和成像探测器。本发明通过设计具有微孔空间坐标、细胞核酸标签和分子核酸标签的三重编码功能的高通量单细胞编码芯片,可将单细胞的基因突变、转录组和蛋白表达信息一一对应起来;再通过温控热循环模块可实现PCR扩增,通过荧光成像模块采集样品的荧光图像,通过数据存储分析模块对荧光图像进行存储于分析,能实现单细胞转录组与基因突变整合分析。

    超高通量的单细胞核酸实时荧光定量分析方法

    公开(公告)号:CN110643688A

    公开(公告)日:2020-01-03

    申请号:CN201910912751.3

    申请日:2019-09-25

    Abstract: 本发明公开了一种超高通量的单细胞核酸实时荧光定量分析方法,包括以下步骤:1)提供一种微孔阵列芯片,所述微孔阵列芯片上设置有至少一个微孔阵列区,所述微孔阵列区包括多个微孔,所述微孔内壁上修饰有至少一个DNA探针;2)将待测样品加入所述微孔阵列芯片中,通过所述微孔捕获单细胞;3)通过所述DNA探针捕获目标核酸分子;4)进行PCR扩增检测,通过荧光定量分析,实现单细胞基因表达水平分析。本发明的方法可以实现十万量级、百万量级的单细胞捕获,通过多种荧光标记可实现多个基因位点的实时定量PCR分析检测,相比于现有产品,极大的提升了检测通量,并且实现了单个细胞的分析而非群体细胞分析。

    具有高品质因数的Lamb波传感器

    公开(公告)号:CN106053595B

    公开(公告)日:2019-08-27

    申请号:CN201610316204.5

    申请日:2016-05-13

    Abstract: 本案涉及一种具有高品质因数的Lamb波传感器,包括:衬底层,其具有薄膜层和腐蚀槽;薄膜层所对应的区域为传感区,薄膜层以外的衬底层上所对应的区域为非传感区;压电层,其设置在衬底层上的远离腐蚀槽的一侧;叉指电极,其设置在压电层表面,包括有输入端和输出端;反射栅,其设置在压电层表面,并位于非传感区内;其中,反射栅被设置在叉指电极的两侧,且位于Lamb波的运动路径上。本案通过在薄膜以外的区域添加反射栅结构,并设计反射栅和IDT的线条之间的间距,实现了Lamb波传感器品质因数的有效增益;在保证理想幅频和相频特性的基础上,达到Lamb波传感器品质因数增益的目的,从而有效降低传感器测试的检测限。

    压电传感芯片、压电传感器及其制备方法

    公开(公告)号:CN109668952A

    公开(公告)日:2019-04-23

    申请号:CN201811559970.X

    申请日:2018-12-19

    Abstract: 本发明提供了一种压电传感芯片、压电传感器及其制备方法,其中,压电传感芯片包括压电材料层,以及压合设置在所述压电材料层表面的电极层;其中,所述压电材料层划分为测量区域与非测量区域,所述测量区域的厚度小于所述非测量区域的厚度。通过将压电材料层中测量区域的厚度设置为小于非测量区域的厚度,即对压电材料层中对应于测量的区域做减薄处理,当测量区域减薄后能够提高该压电材料层中测量区域的谐振频率,从而提高压电传感芯片的测量灵敏度;此外,由于压电材料层的非测量区域的厚度保持不变,能够保证该压电传感芯片的硬度,保证了压电芯片拥有高基频谐振频率特性的同时,也能保证做制备的压电芯片易夹持、易试用等特点。

Patent Agency Ranking