一种针对海量文本数据的定向筛选架构及方法

    公开(公告)号:CN113742478A

    公开(公告)日:2021-12-03

    申请号:CN202010474192.5

    申请日:2020-05-29

    Abstract: 本发明公开了一种针对海量文本数据的定向筛选架构及方法。本方法步骤包括:1)使用关键词匹配方法从待筛选文本中获取疑似目标文本;2)从已标注的目标文本中提取常用句式,并分为与业务强相关句式、与业务弱相关句式;对待筛选文本进行模糊句式匹配,如果与业务强相关句式匹配,则将文本判断为目标文本,否则为疑似目标文本;3)对每一疑似目标文本进行分类;4)根据疑似目标文本匹配上的关键词的个数确定文本的评估值E1;根据分类判别结果,确定文本的评估值E2;基于文本与外部辅助语料的信息匹配结果确定文本的评估值E3;然后基于评估值E1~E3,计算得到文本最终评分反馈给研判层;5)研判层确定反馈的文本是否为目标文本。

    一种诈骗群体的识别方法
    79.
    发明公开

    公开(公告)号:CN110188805A

    公开(公告)日:2019-08-30

    申请号:CN201910414965.8

    申请日:2019-05-17

    Abstract: 一种诈骗群体的识别方法,包括有:步骤一、提取每对疑似诈骗号码和受害人号码之间的通话和短信话单,分别构建通话特征向量和短信特征向量,将所有疑似诈骗号码和受害人号码的通话特征向量和短信特征向量输入诈骗行为特征提取模型,从而获得每对疑似诈骗号码和受害人号码的诈骗特征指纹;其中,诈骗特征指纹用于标识每对疑似诈骗号码和受害人号码之间的诈骗行为程度;步骤二、根据每对疑似诈骗号码和受害人号码的诈骗特征指纹,识别每两个疑似诈骗号码之间的区别度,并将相互之间区别度低的疑似诈骗号码构成一个诈骗群体。本发明属于信息技术领域,能基于通话和短信话单,全面且准确的识别由诈骗行为接近的诈骗号码所构成的诈骗群体。

    一种基于滑动时间窗口聚合的电信诈骗电话的序列异常检测方法

    公开(公告)号:CN109587350A

    公开(公告)日:2019-04-05

    申请号:CN201811373658.1

    申请日:2018-11-16

    Abstract: 本发明公开了一种基于滑动时间窗口聚合的电信诈骗电话的序列异常检测方法,属于数据挖掘与机器学习和商务智能领域。首先构造训练用户数据集,回溯被叫用户全部通话记录,形成各被叫用户通话序列。利用cos相似度函数,计算序列结构相似度和统计特征相似度并进行线性组合,得到加和相似度。然后通过K-Means聚类模型得到K类用户,构成独立的序列训练数据集,通过滑动时间窗口,形成K个训练集。最后在每个训练集上训练iForest模型,得到K个异常检测模型。每个被叫用户通过对应的异常检测模型识别异常,当最大值高于阈值h时,该被叫用户是高风险的被叫用户。每过固定时间段更新K-Means模型和异常检测模型。本发明缓解了数据稀疏性问题,发现基于群组的异常特征。

Patent Agency Ranking