-
公开(公告)号:CN113943175B
公开(公告)日:2022-12-27
申请号:CN202111262913.7
申请日:2021-10-25
Applicant: 西北工业大学
IPC: C04B41/89
Abstract: 本发明涉及一种碳/碳复合材料的Si‑B‑C梯度抗氧化涂层及制备方法,由SiC和B4C相构成自愈合涂层,具有梯度结构,从内到外分别为富硼层、过渡层、富硅层;通过采用化学气相沉积法沉积不同B含量的Si‑B‑C涂层,成功在C/C复合材料表面制备了梯度涂层。其目的是为了提高涂层在宽温域下的抗氧化性能。本发明具有反应温度低,对纤维损伤小;涂层和基体结合能力较好,在700‑1000℃低温区,内层富硼层生成氧化硼玻璃,阻止氧气的进入;在1000‑1300℃高温区,外层富硅层生成硼硅酸盐玻璃相,阻止内层氧化硼的挥发的同时保护C/C复合材料,实现在宽温域下对C/C复合材料的氧化防护。且工艺过程简单,实验周期短,实验效率高;涂层在宽温域下抗氧化性能好等优点。
-
公开(公告)号:CN115353099A
公开(公告)日:2022-11-18
申请号:CN202210994069.5
申请日:2022-08-18
Applicant: 西北工业大学
IPC: C01B32/186
Abstract: 本发明涉及一种孔隙率与孔径可控的多边界石墨烯泡沫及制备方法,将SiO2纳米球粉末与尿素粉末的混合粉末干压成型,使用化学气相沉积技术在SiO2纳米球表面沉积竖直生长的多边界石墨烯,最后使用氢氟酸将SiO2去除,得到具有多尺度孔径的多边界石墨烯泡沫结构。改变SiO2纳米球粉末与尿素粉末的质量比,控制孔隙率与孔径;改变SiO2纳米球的粒径,控制中空石墨烯球的大小;改变化学气相沉积时的温度和时间,控制多边界石墨烯泡沫中石墨烯片层的大小和厚度。本发明方法环境友好、适应面广,制备的多边界石墨烯泡沫具有低密度、高孔隙率以及孔隙率与孔径可控等优点,可广泛应用于导电、导热复合材料、电磁屏蔽及吸波材料等领域。
-
公开(公告)号:CN115259900A
公开(公告)日:2022-11-01
申请号:CN202210294314.1
申请日:2022-03-23
Applicant: 西北工业大学
IPC: C04B41/87
Abstract: 本发明涉及一种极长(TaxHf1‑x)C超高温陶瓷固溶体纳米线及制备方法,开发一种具有超高熔点和更优异韧性性能的极长固溶体纳米线,通过调节工艺参数达到控制其成分和形貌的需求,以实现在极端环境下对复合材料的可控增强和对超高温陶瓷的可控增韧。(TaxHf1‑x)C固溶体超高的熔点、低的热膨胀系数及更优异的抗烧蚀性能是增强相和增韧相的绝佳选择。此外,本发明制备工艺简单、操作方便、同时适用于简单形状和复杂形状的多种基体,可以制备出产物均匀、连续、产量高且纯度高的(TaxHf1‑x)C超高温陶瓷固溶体纳米线,(TaxHf1‑x)C固溶体具有优异的导电性,因此,该方法还有利于实现材料电磁屏蔽性能的进一步改善。
-
公开(公告)号:CN112142499B
公开(公告)日:2022-10-14
申请号:CN202011053365.2
申请日:2020-09-29
Applicant: 西北工业大学
Abstract: 本发明涉及一种在碳/碳复合材料表面制备SiO2‑SiC镶嵌结构微孔抗氧化涂层的方法,用于缓解陶瓷涂层因热失配引起的易开裂问题,提高碳/碳复合材料的抗氧化性能。本发明的技术方案是通过包埋法在碳/碳复合材料表面制备致密的SiC‑Si内涂层,然后用料浆法和热处理制备多孔的SiC‑Si外涂层,最后经过高温预氧化,氧气在多孔的外涂层快速扩散,氧化SiC颗粒,形成了SiO2‑SiC镶嵌结构微孔抗氧化涂层,该结构的具有很好的阻氧扩散能力,微孔的存在也会对氧化过程中产生的裂纹扩展具有阻碍作用,该涂层在1500℃空气环境下表现出良好的抗热震性能。
-
公开(公告)号:CN115124348A
公开(公告)日:2022-09-30
申请号:CN202210616198.0
申请日:2022-05-31
Applicant: 西北工业大学
IPC: C04B35/58 , C04B41/87 , C04B35/622
Abstract: 本发明涉及一种单相(HfxZr1‑x)N固溶体超高温抗烧蚀陶瓷涂层及制备方法,属于超高温抗烧蚀功能涂层技术领域。在实际应用角度上,本发明扩宽了氮化物超高温陶瓷在抗烧蚀防护领域的应用。本发明通过化学气相沉积方法在HfCl4和ZrCl4分别为Hf和Zr源,N2和H2分别为N源和反应气体下在C/C复合材料表面制备了单相(HfxZr1‑x)N固溶体超高温抗烧蚀陶瓷涂层。使用本发明所制备的的涂层能够解决现有的抗烧蚀陶瓷涂层烧蚀时间短、易脱落和不易在异形复杂构件表面均为分布等问题,有效提高了传统陶瓷涂层在超高温烧蚀环境下的服役寿命。
-
公开(公告)号:CN114538964A
公开(公告)日:2022-05-27
申请号:CN202210192112.6
申请日:2022-03-01
Applicant: 西北工业大学
IPC: C04B41/89
Abstract: 本发明涉及一种SiC‑Si包覆碳/碳复合材料表面富含MoSi2高温抗氧化涂层及制备方法,首先采用料浆涂刷法以无水乙醇、聚乙烯醇(PVA)粘结剂和Mo粉为原料在试样表面制备Mo原始涂层,其次通过热处理获得Mo5Si3多孔层,最后在高温下利用液态硅填充孔隙并与Mo5Si3反应制备出富含MoSi2的多相镶嵌涂层。该方法工序简单、成本低,可通过涂刷次数调节涂层的厚度,改变加入料浆中Mo粉的占比间接调控最终涂层的物相组成,亦或是通过适当提高热处理温度和延长时间来促进Mo层转变成Mo5Si3多孔层的效率,同时调节多孔层的孔隙尺寸,进而优化涂层中MoSi2和Si相分布情况。最终为设计MoSi2基抗氧化涂层体系及提高其抗氧化性能提供了一种简单有效的方法。
-
公开(公告)号:CN113402303A
公开(公告)日:2021-09-17
申请号:CN202110739777.X
申请日:2021-06-30
Applicant: 西北工业大学
IPC: C04B41/87
Abstract: 本发明涉及一种基于梯度蒸发模具的CVD‑TaxHf1‑xC固溶体涂层的制备方法,将C/C基体悬挂于化学气相沉积炉中;将前驱体HfCl4和TaCl5粉料放置于蒸发容器内,并置于化学气相沉积炉的低温挥发区;将化学气相沉积炉抽真空至5Kpa,并且关闭阀门以及真空泵后保压通入氩气;加热两步,第一步以7℃/min加热到900℃,第二步程序以6℃/min加热到1100~1250℃,使炉腔在氩气保护下升温至预设温度;沉积完成后挺直通入氢气和甲烷,继续通入氩气对炉腔进行清洗和降温,使炉体自然冷却,得到带有TaxHf1‑xC固溶体涂层的C/C复合材料。本发明的制备工艺简单易操作,制备周期短,能够适用于形状复杂的复合材料构件,深化了TaxHf1‑xC固溶体陶瓷其在超高温材料领域中的应用。
-
公开(公告)号:CN113122822A
公开(公告)日:2021-07-16
申请号:CN202110368528.4
申请日:2021-04-06
Applicant: 西北工业大学
IPC: C23C16/448 , C23C16/455
Abstract: 本发明涉及一种带有沉积载具的化学气相沉积炉及进行沉积的方法,沉积载具、刚玉管位于化学气相沉积炉炉体内;发热体沿周向环绕在刚玉管的外围;沉积时,首先将固态粉末前驱体置于送粉装置中,气态前驱体在相应的外置气瓶中,被沉积的试样通过圆孔悬挂于载具沉积腔的内套筒中。将沉积载具按照装配顺序依次组装,放入炉体刚玉管内。打开真空泵,将炉体内抽为负压状态,压力根据沉积需要而定。本发明中的带有沉积载具的送粉式化学气相沉积炉可提高固态粉末前驱体利用率,节约成本,同时获得均匀的高质量涂层。且固态粉末前驱体几乎完全挥发为气体,可减少尾气管中的固体成分,减小尾气管道的堵塞,节约沉积和维修的时间。
-
公开(公告)号:CN112142499A
公开(公告)日:2020-12-29
申请号:CN202011053365.2
申请日:2020-09-29
Applicant: 西北工业大学
IPC: C04B41/89
Abstract: 本发明涉及一种在碳/碳复合材料表面制备SiO2‑SiC镶嵌结构微孔抗氧化涂层的方法,用于缓解陶瓷涂层因热失配引起的易开裂问题,提高碳/碳复合材料的抗氧化性能。本发明的技术方案是通过包埋法在碳/碳复合材料表面制备致密的SiC‑Si内涂层,然后用料浆法和热处理制备多孔的SiC‑Si外涂层,最后经过高温预氧化,氧气在多孔的外涂层快速扩散,氧化SiC颗粒,形成了SiO2‑SiC镶嵌结构微孔抗氧化涂层,该结构的具有很好的阻氧扩散能力,微孔的存在也会对氧化过程中产生的裂纹扩展具有阻碍作用,该涂层在1500℃空气环境下表现出良好的抗热震性能。
-
公开(公告)号:CN111485220A
公开(公告)日:2020-08-04
申请号:CN202010470272.3
申请日:2020-05-28
Applicant: 西北工业大学
IPC: C23C16/02 , C23C16/32 , C23C16/455 , B82Y30/00 , B82Y40/00
Abstract: 本发明涉及一种SiC纳米线增韧化学气相沉积ZrC涂层及制备方法,利用SiC热膨胀系数适中的特点,以及SiC纳米线一维线性特性,可以缓解ZrC涂层与C/C复合材料热膨胀不匹配现象。在涂层制备和烧蚀过程中,借助SiC纳米线拔出、桥联以及裂纹转向机制,终止裂纹或改变裂纹扩展路径,从而起到增韧效果,进而提高ZrC涂层的抗烧蚀性能。用SiC纳米线增韧的化学气相沉积ZrC涂层,其表面裂纹在扩展过程中发生多次偏转,消耗能量阻止裂纹快速扩展。在没有裂纹的地方可见,该方法所制备的涂层致密且均匀,组织可控。
-
-
-
-
-
-
-
-
-