基于图划分策略的数据库模式抽象方法

    公开(公告)号:CN105956012A

    公开(公告)日:2016-09-21

    申请号:CN201610251897.4

    申请日:2016-04-21

    CPC classification number: G06F17/30598

    Abstract: 基于图划分策略的数据库模式抽象方法,本发明涉及数据库模式抽象方法。本发明是要解决忽略了表与表之间的结构紧密性、用户查询偏好信息以及现有方法对模式抽象结果中主题类簇的个数无法做出准确预测的问题,而提出的基于图划分策略的数据库模式抽象方法。该方法是通过一、构建关系数据库的拓扑紧密性矩阵T;二、计算得到表间相似性矩阵ADB;三、得到最终的数据表ti和数据表tj间的相似性计算结果;四、得到最终的表重要性度量结果;五、利用类簇代表检测算法得到结果集合R;六、将数据表ti和数据表tj划分到主题类簇等步骤实现的。本发明应用于数据库模式抽象领域。

    一种基于二阶反向传播优先级的游戏策略获得方法

    公开(公告)号:CN111001161B

    公开(公告)日:2023-04-07

    申请号:CN201911351336.1

    申请日:2019-12-24

    Abstract: 一种基于二阶反向传播优先级的游戏策略获得方法,它属于智能化决策获取技术领域。本发明解决了在游戏策略的指挥决策过程中存在的数据利用率低以及策略质量低的问题。本发明方法结合了DPSCRM方法和BPTM方法,通过样本序列的累计奖赏值构建第一级奖赏值,可以获得高质量的策略;基于TD‑error构建优先级可以反向衰减传播的第二级优先级,可以提升数据利用率。本发明可以应用于游戏策略的获取。

    一种基于异质图注意力网络的文档级关系抽取方法

    公开(公告)号:CN114648017A

    公开(公告)日:2022-06-21

    申请号:CN202210386134.6

    申请日:2022-04-13

    Abstract: 一种基于异质图注意力网络的文档级关系抽取方法,具体涉及一种基于异质图注意力网络的文档级实体关系的抽取方法,本发明为了解决现有的图神经网络在获取节点表示时忽略了图中节点和边,导致关系抽取的准确率低的问题,它包括以下步骤:S1、获取文档文本;S2、建立文档级关系抽取模型,将S1中获取的文档文本输入文档级关系抽取模型内进行训练,输出所述文档文本的关系,得到训练好的文档级关系抽取模型;S3、将待抽取文档级关系的文档文本输入S2中训练好的文档级关系抽取模型内,得到对应的文档文本的关系。属于计算机技术领域。

    一种基于PGM与PSO聚类的船舰数据关系抽取方法

    公开(公告)号:CN111626343B

    公开(公告)日:2022-05-03

    申请号:CN202010403756.6

    申请日:2020-05-13

    Abstract: 一种基于PGM与PSO聚类的船舰数据关系抽取方法,涉及数据处理技术领域,针对现有技术中在构建面向知识图谱过程中关系抽取存在的船舰数据抽取准确率低以及效率低的问题,本发明用一个概率图模型来计算相似度分数,依据这个分数对不同候选对象之间的相似程度进行划分,以使实体对更好的进行匹配,使用灵活的相似度准则来消除实体匹配的歧义,可以抽取更多关系。对现有的聚类算法中的适应度函数进行了优化,增加了两个准则,不易局部最优解的情况,使其能够加速收敛,从而获得最优解,在构建面向知识图谱过程中关系抽取准确率以及效率高。

    一种面向水下目标识别的特征级信息融合方法

    公开(公告)号:CN111626341B

    公开(公告)日:2022-04-08

    申请号:CN202010397828.0

    申请日:2020-05-12

    Abstract: 一种面向水下目标识别的特征级信息融合方法,它属于水下目标识别技术领域。本发明解决了原始水下声音数据本身携带的目标特性有限,采用专家特征提取方法很难从原始数据中提取出有效的特征,且采用现有方法对提取出的特征信息融合效果不佳的问题。本发明对采集的原始声音数据进行处理,使处理过的数据不仅包含目标水声特性,还包含了目标方位特性与速度变化特性。再采用一个端到端的深度神经网络完成后续的特征提取和信息融合工作,克服了采用专家特征提取方法很难从原始数据中提取出有效特征的问题,而且通过实验证明了本发明特征信息融合方法的有效性。本发明可以应用于水下目标识别。

    一种基于神经网络的多模态情感分类方法

    公开(公告)号:CN113988201A

    公开(公告)日:2022-01-28

    申请号:CN202111294685.1

    申请日:2021-11-03

    Abstract: 一种基于神经网络的多模态情感分类方法,具体涉及一种基于多模态情感分类的神经网络模型的分类方法,本发明为了解决传统的情感分类方法大多针对单一类型的数据,并不能处理社交网络坏境下多模态的混合信息的问题,它包括提取待预测情感图片中的多模态数据;提取多模态数据中各单模态的原始向量;根据各模态的原始向量计算各模态的指导向量;获得各模态的重构特征向量;利用注意力机制对得到的各模态的重构特征向量进行加权平均,生成融合特征向量;将得到的融合特征向量输入至情感分类模型中,输出分类结果。本发明用于对社交网络坏境下多模态的混合信息进行情感分类,属于自然语言处领域。

    一种基于偏离特征的离群点挖掘方法

    公开(公告)号:CN107562778B

    公开(公告)日:2021-09-28

    申请号:CN201710599251.X

    申请日:2017-07-21

    Abstract: 本发明公开了一种基于偏离特征的离群点挖掘方法,包括以下步骤:(1)将数据集的各个维度划分为h个等间距的间隔,则整个数据集被划分为hd个网格;(2)将每个数据点与网格索引做一个关联,如果一个网格中不包含数据点,则不考虑该网格;(3)对于划分形成的空间中的各个网格,求出网格的质心,并计算质心的局部离群因子;(4)计算每个数据对象的局部离群因子,数据集中对象的局部离群因子等于所属网格质心的离群因子。本发明在检测数据集中的离群点时,采用F_LOF检测算法将数据空间划分为网格,基于网格的质心来计算数据点的局部离群因子,降低了计算时间,提高检测效率,表现出了其优越性。

    一种基于水下目标及环境信息特征的声音生成方法

    公开(公告)号:CN111627419A

    公开(公告)日:2020-09-04

    申请号:CN202010387814.0

    申请日:2020-05-09

    Abstract: 一种基于水下目标及环境信息特征的声音生成方法,它属于水声信号生成研究领域。本发明解决了利用传统特征提取方法构造出的水下目标声音信号特征字典和环境声音信号特征字典进行水声信号生成时会导致生成的水声信号的效果差,以及现有TTS声音生成模型在水声信号生成上的应用受到限制的问题。本发明结合听觉注意机制的特点,对水下目标声音信号和环境声音信号进行特征提取时将其特征显著化,提高水下目标声音信号和环境声音信号特征字典的特征准确度。将特征字典作为声音生成模型的发声字典,嵌入声音生成模型,提升了生成的水声信号的效果,本发明使TTS的应用领域从对人类语音的生成扩展到对水声信号的生成。本发明方法可以应用于水声信号的生成。

Patent Agency Ranking