一种基于双特征选择对抗样本生成方法及系统

    公开(公告)号:CN116701910A

    公开(公告)日:2023-09-05

    申请号:CN202310673940.6

    申请日:2023-06-06

    Abstract: 本发明提出了一种基于双特征选择对抗样本生成方法及系统,通过图神经网络、自编码器分别对工业传感器进行选择,分别得到异常情况较高的的工业传感器组,基于所得到的两组工业传感器所输出的异常数据采用非梯度优化算法进行优化迭代生成对抗性样本;采用不同的网络模型对工业传感器进行异常选择的方式,仅对于所选择的异常情况较高的工业传感器的数据进行后续的处理,在提高后续所生成的对抗性样本质量的情况下也解决了现有的优化方法中采用所有的数据进行优化造成的资源消耗率高的问题,而且采用非梯度的优化方法生成速度快、资源占用率低,而且所生成的对抗性样本质量高于深度学习的对抗性样本的质量。

    基于lightGBM的流量多进程入侵检测方法及系统

    公开(公告)号:CN116668085A

    公开(公告)日:2023-08-29

    申请号:CN202310512607.7

    申请日:2023-05-05

    Abstract: 本公开提供了基于lightGBM的流量多进程入侵检测方法及系统,涉及网络流量入侵检测技术领域,方法包括设定入侵检测的父进程,所述父进程下设定两个并行的子进程,第一子进程和第二子进程分别获取网络数据的流级统计特征以及流量;其中,第二子进程以相同的时间为间隔对监听的流量进行拆分存储,再以五元组信息将流量文件拆分为多个单独的会话,判断每个会话是否采用tls协议进行加密传输,对采用tls协议加密传输的会话进行特征提取,获取加密流量的字节特征;两个子进程分别将获取的流级统计特征和字节特征输入至基于决策树的lightGBM的模型中,判断是否发生入侵检测行为。本公开解决多种特征并行检测的问题,保证了入侵检测的高准确率。

    基于扁平化注意力机制的时序数据异常检测方法及系统

    公开(公告)号:CN119336821A

    公开(公告)日:2025-01-21

    申请号:CN202411873970.2

    申请日:2024-12-19

    Abstract: 本发明公开的基于扁平化注意力机制的时序数据异常检测方法及系统,属于时序数据异常检测技术领域,所述方法包括:获取时序数据;对时序数据进行时间块划分,获得时间块内嵌入和时间块间嵌入;计算每种嵌入的扁平化注意力值和自注意力值;将每种嵌入的扁平化注意力值和自注意力值进行加权融合,获得每种嵌入的注意力加权融合结果;将每种嵌入的注意力加权融合结果进行上采样,获得每种嵌入的上采样后结果;根据每种嵌入的上采样后结果,计算获得时序数据的异常得分;根据时序数据的异常得分,确定时序数据的异常检测结果。提高了时序数据异常检测的准确率,解决了当前对时序数据异常检测准确率偏低的问题。

Patent Agency Ranking