基于空间光调制器的结构探测共焦显微成像方法及装置

    公开(公告)号:CN106767400B

    公开(公告)日:2019-05-10

    申请号:CN201611046803.6

    申请日:2016-11-23

    Abstract: 基于空间光调制器的结构探测共焦显微成像方法与装置。主要解决了以往共焦显微成像图片采集速率低、图像处理时间长的问题。该方法在共焦扫描显微系统中引入结构探测方法,采用空间光调制器模拟结构探测函数,对探测光斑进行调制,之后利用光电探测器测量调制后的光强,得到与待测样品采样点相对应的光强值,结合共焦显微系统的扫描机制,可实现对待测样品的三维成像;本发明还提供了一种适用于上述方法的测量装置,以透射式空间光调制器及光电探测器来实现结构探测,具备分辨率高,成像速度高的特点。

    一种基于多点进泥的污水污泥多级耦合板框压滤脱水装置及其使用方法

    公开(公告)号:CN106517720B

    公开(公告)日:2019-04-26

    申请号:CN201611034688.0

    申请日:2016-11-22

    Abstract: 一种基于多点进泥的污水污泥多级耦合板框压滤脱水装置及其使用方法,涉及一种板框压滤脱水装置及其使用方法。本发明是为了解决目前板框压滤机脱水效率低的技术问题。本发明是由进泥总管、进泥支管、板框压滤机、螺旋输送机、混合破碎器、生石灰加药管、二级压滤进泥管组成;板框压滤机的滤板上有5个进泥孔;螺旋输送机位于板框压滤机的下方并与混合破碎器连通,二级压滤进泥管分别与混合破碎器和进泥总管连通,生石灰加药管与混合破碎器连通。本装置的使用方法:第一级压滤、混合破碎、第二级压滤。本发明将污泥含水率降至60%以下,泥饼平面方向的含水率差值可降至0.2%以下,泥饼纵向的含水率差值可降至1%以下。

    一种复层金属微通道结构复合与成形一体化装置及方法

    公开(公告)号:CN109647986A

    公开(公告)日:2019-04-19

    申请号:CN201910008197.6

    申请日:2019-01-04

    Abstract: 本发明公开了一种复层金属微通道结构复合与成形一体化装置及方法,其解决了现有结构设计,存在模具装置结构复杂、金属微通道结构加工工艺流程复杂且制作成本高、单金属材质单独加工成形微通道结构质量差且自身性能得不到改善的技术问题,包括配套的上模座和下模座,上模座通过导套和导柱可实现上下往复运动;上模座的下表面上固设有凸模,下模座的上表面上固设有凹模,凹模设于下模座的上表面上且与凹模固定板围成模具型腔,凹模的上表面向内凹陷设有微通道凹槽;凸模通过凸模固定板固设于上模座的下表面上,凸模的上端与上模座接触的上表面向内凹陷设有凹槽,凹槽内固定连接设有贯穿上模座的振子,可广泛应用于双金属微通道结构精密制造领域。

    一种石墨烯微片负载纳米镍复合粉体的制备方法

    公开(公告)号:CN106735299B

    公开(公告)日:2019-03-05

    申请号:CN201611182245.6

    申请日:2016-12-20

    Inventor: 王春雨 张鹏

    Abstract: 本发明涉及石墨烯微片表面改性工艺技术领域,具体的说是一种石墨烯微片负载纳米镍复合粉体的制备方法,其包括:将石墨烯微片浸泡在氧化性酸溶液中,然后将石墨烯微片冲洗取出,使用一种含有还原剂的镍盐溶液,在机械搅拌和超声震荡共同作用下,使酸化后石墨烯微片分散在镍盐溶液中,再把以上混有石墨烯微片镍溶液置于反应釜中,在200~400℃环境下作用2‑24小时,镍纳米颗粒负载于石墨烯微片上,降温到室温下打开罐体,取出石墨烯/镍复合粉体,40‑60℃烘干即可,本发明工艺简单,易于操作,有利于工业化生产。

    一种人造血管及其制备方法

    公开(公告)号:CN109009561A

    公开(公告)日:2018-12-18

    申请号:CN201810914099.4

    申请日:2018-08-13

    Abstract: 本发明提供一种人造血管及其制备方法,其解决了现有人造血管降解速度与接种细胞的生长增殖速度不匹配的技术问题,其由血管支架和接种细胞构成,所述血管支架依次由紧密连接的内层支架、中间层支架和外层支架构成,所述内层支架是由聚丁二酸乙二醇酯和抗凝剂构成的一层多孔纤维圆管状结构;所述中间层支架是由水凝胶类材料、生物陶瓷材料、生长因子构成的一层多孔纤维圆管状结构,所述中间层支架的孔隙内粘附填充所述接种细胞;所述外层支架是由聚丁二酸丁二醇酯构成的一层多孔纤维圆管状结构;同时该公开了人造血管的制备方法,可广泛应用于植入性医疗器械领域。

    一种减小辊筒模具超精密机床加工微结构闭合误差的方法

    公开(公告)号:CN108334027A

    公开(公告)日:2018-07-27

    申请号:CN201810074312.5

    申请日:2018-01-25

    Abstract: 本发明公开了一种减小辊筒模具超精密机床加工微结构闭合误差的方法,所述方法步骤如下:一、分析超精密机床加工过程中温度变化造成的影响,当温度变化引起辊筒尺寸变化的范围在微米量级,同时要求的辊筒模具微结构闭合节距误差非常小时,则通过对加工程序进行优化以减小微结构闭合节距误差;二、根据加工的辊筒模具直径尺寸与微结构数目及温度变化范围选定多分法需要分区的数目;三、根据步骤二选定的分割次数计算有/无余数时各微结构的角度位置,写出其通项公式并对余数进行处理;四、根据步骤三中计算得到的微结构空间角度分布编写加工程序,实现多分法加工。本发明对提高微结构辊筒模具加工质量、制造超大尺寸光学转印膜片等具有重要意义。

    一种大气等离子体射流加工对刀方法

    公开(公告)号:CN105328318B

    公开(公告)日:2018-01-30

    申请号:CN201510771276.4

    申请日:2015-11-12

    Abstract: 一种大气等离子体射流加工对刀方法,涉及精密光学加工领域。解决了大气等离子体射流的对刀问题。该方法包括:步骤一、组装大气等离子体射流加工对刀装置;步骤二、安装大气等离子体射流加工对刀装置;步骤三、等离子体射流发射装置发射等离子体射流,调节机床使等离子体射流发射装置与通孔发生相对运动,压强传感器记录等离子体射流产生压强数据,机床控制系统记录大气等离子体射流加工对刀装置的X轴向运动距离和Y轴向运动距离,并根据压强数据、X轴向运动距离和Y轴向运动距离获得X轴方向射流位置X0和Y轴方向射流位置Y0;步骤四、确定等离子体射流中心位置坐标,完成对刀。它适用于其他需要对刀的场合。

    一种基于机床动力学特性的切削模拟方法

    公开(公告)号:CN104765937B

    公开(公告)日:2017-09-29

    申请号:CN201510218152.3

    申请日:2015-04-30

    Abstract: 一种基于机床动力学特性的切削模拟方法,本发明涉及基于机床动力学特性的切削模拟方法。本发明是要解决现有的切削仿真模型,无法考虑机床的动态性能,不能进行表面波纹度仿真的问题,而提出的一种基于机床动力学特性的切削模拟方法。该方法是通过步骤一:得到机床的主导模态参数;步骤二:根据机床的主导模态参数将机床等效成与机床具有相同动态特性的线性杆单元模型;步骤三:将步骤二得到的等效的线性杆单元与刀具模型进行耦合,建立仿真模型;步骤四:采用步骤三所建立的仿真模型,进行切削仿真;即可得到考虑机床动态特性的切削结果等步骤实现的。本发明应用于切削模拟领域。

    一种石墨烯微片负载纳米镍复合粉体的制备方法

    公开(公告)号:CN106735299A

    公开(公告)日:2017-05-31

    申请号:CN201611182245.6

    申请日:2016-12-20

    Inventor: 王春雨 张鹏

    CPC classification number: B22F9/24 B22F1/0018 B82Y40/00

    Abstract: 本发明涉及石墨烯微片表面改性工艺技术领域,具体的说是一种石墨烯微片负载纳米镍复合粉体的制备方法,其包括:将石墨烯微片浸泡在氧化性酸溶液中,然后将石墨烯微片冲洗取出,使用一种含有还原剂的镍盐溶液,在机械搅拌和超声震荡共同作用下,使酸化后石墨烯微片分散在镍盐溶液中,再把以上混有石墨烯微片镍溶液置于反应釜中,在200~400℃环境下作用2‑24小时,镍纳米颗粒负载于石墨烯微片上,降温到室温下打开罐体,取出石墨烯/镍复合粉体,40‑60℃烘干即可,本发明工艺简单,易于操作,有利于工业化生产。

Patent Agency Ranking