一种用于制备高密度耐腐蚀发动机连杆的组合物及发动机连杆的制备方法

    公开(公告)号:CN109249014A

    公开(公告)日:2019-01-22

    申请号:CN201811175674.X

    申请日:2018-10-10

    Abstract: 本发明涉及一种用于制备高密度耐腐蚀发动机连杆的组合物及发动机连杆的制备方法,用于制备高密度耐腐蚀发动机连杆的组合物包括以重量份数计的以下各组分:铁粉90-100份,镍粉1-10份,钼粉0.1-1份,铜粉0.1-1份,镉粉0.05-0.5份,锰粉0.05-0.5份,石蜡1-5份,聚丙烯0-1份,高密度聚乙烯0.05-1份,聚苯乙烯0-1份,表面活性剂0.1-0.5份,润滑剂0.3-0.9份。本发明采用温压技术,生产所述的高密度耐腐蚀发动机连杆的成本低,有利于提升汽车发动机性能、降低生产成本、减轻重量、节能降耗。对促进温压技术在国内汽车零部件生产中的推广应用,具有非常重要的意义。

    一种金属钨表面Al2O3-SiO2高温绝缘涂层及其制备方法

    公开(公告)号:CN105296918B

    公开(公告)日:2018-08-14

    申请号:CN201510762811.X

    申请日:2015-11-11

    Abstract: 本发明公开了一种金属钨表面Al2O3‑SiO2高温绝缘涂层及其制备方法,该方法首先在惰性气体或氢气气氛中,利用包埋铝化法在钨表面制备一层W‑Al层;然后在惰性气体或氢气的保护下,通过包埋硅化法在钨表面制备一层W‑Al‑Si层;最后将W‑Al‑Si层氧化,使其在钨材料表面形成Al2O3‑SiO2绝缘层。本发明在金属钨表面通过两步包埋法+氧化法制备的Al2O3‑SiO2高温绝缘涂层材料,工艺简单,生产成本低,具有良好的电绝缘性能,可作为聚变堆中钨包层材料的绝缘涂层。

    一种高纯难熔金属块体的制备方法

    公开(公告)号:CN108296480A

    公开(公告)日:2018-07-20

    申请号:CN201810244991.6

    申请日:2018-03-23

    Abstract: 本发明提供一种高纯难熔金属块体的制备方法,涉及金属冶金技术领域。一种高纯难熔金属块体的制备方法,选用与待烧结金属粉末难相溶的金属包覆料制成包覆片,用包覆片包裹待烧结的金属粉末。且金属粉末未被包覆片完全密封。将包裹的物料经过真空烧结,得到外表面完全被包覆料覆盖的烧结物,然后去除烧结物外表面的包覆料,即得到无碳污染的高纯块体。在烧结过程中,随温度升高,包裹料融化成液体。液体金属紧密附着在待烧结金属的表面,形成屏障,良好隔绝高温环境下碳气氛对物料的影响。包覆料简单、灵活的适用烧结过程,普通高温烧结设备即可完成加工,可适用于高纯度需求的难熔金属块体的高效低成本烧结成型。

    一种二维纳米二硫化钼及其制备方法

    公开(公告)号:CN106379940B

    公开(公告)日:2018-05-29

    申请号:CN201611049885.X

    申请日:2016-11-24

    Abstract: 本发明公开了一种二维纳米二硫化钼及其制备方法,以四水仲钼酸铵为钼源加入浓氨水中,硫化铵溶液为硫源,以硝酸铵和甘氨酸为反应燃料,利用钼具有的亲硫疏氧特性,通过硫化反应和高温分解制备出具有二维纳米层状结构的二硫化钼,其制备工艺流程为:配制母液→加入甘氨酸→加入硝酸铵→反应合成→二维纳米二硫化钼。按以上工艺制备的二维纳米二硫化钼粉末的颗粒尺寸为30~100nm,多数二硫化钼的层数为2~6层,层间距为0.60~0.69nm。本发明为制备二维纳米层状二硫化钼提供了简单高效的方法。

    一种高能量密度的电极材料及其制备方法

    公开(公告)号:CN108010741A

    公开(公告)日:2018-05-08

    申请号:CN201711237497.9

    申请日:2017-11-30

    CPC classification number: Y02E60/13 H01G11/30 H01G11/46 H01G11/86

    Abstract: 本发明提供一种高能量密度的电极材料及其制备方法,涉及电化学技术领域。一种高能量密度的电极材料,包括金属基体和形成于所述金属基体表面的复合金属氧化物涂层,复合氧化物涂层包括SnO2、Co3O4和RuO2,其中,Sn、Co和Ru的摩尔比为1~4:2~5:4。其制备方法为:对金属基体进行刻蚀,并配置得到Sn、Co和Ru的复合金属盐溶液,将复合金属盐溶液涂在金属基体上,在280-300℃条件下热氧化处理20~50min。制备方法简单,易于操作,制得的电极材料有效减少了钌的用量,具有很高的比电容值,具有广阔的市场应用前景。

    一种原位合成CNTs增韧TiB<base:Sub>2</base:Sub>基超高温陶瓷材料的制备方法

    公开(公告)号:CN105174966B

    公开(公告)日:2017-09-19

    申请号:CN201510539816.6

    申请日:2015-08-28

    Abstract: 公开了一种原位合成CNTs增韧TiB2基超高温陶瓷材料的制备方法,包括:恒温条件下还原MezOy/TiB2催化剂前驱体,得到Me/TiB2复合催化剂;向Me/TiB2复合催化剂通入CH4与N2的混合气体,使Me/TiB2复合催化剂的TiB2粉末的表面原位生长CNTs,得到CNTs/TiB2复合粉末;对CNTs/TiB2复合粉末进行放电等离子烧结,得到CNTs增韧TiB2基超高温陶瓷材料。根据本发明的方法,能大幅提高TiB2基陶瓷材料的断裂韧性、抗热震性能以及其他力学性能。

    一种超高温CNTs/TiB<base:Sub>2</base:Sub>‑SiC陶瓷复合材料及其制备方法

    公开(公告)号:CN105174967B

    公开(公告)日:2017-07-11

    申请号:CN201510561635.3

    申请日:2015-09-07

    Abstract: 本发明提供了一种超高温CNTs/TiB2‑SiC陶瓷复合材料的制备方法,该方法包括:将二硼化钛粉末、碳化硅粉末和碳纳米管粉末混合、烘干、研磨,得到二硼化钛、碳化硅和碳纳米管的混合粉料;然后通过放电等离子烧结成型工艺烧结该混合粉料,得到SPS快速烧结的CNTs/TiB2‑SiC陶瓷复合材料。CNTs/TiB2‑SiC陶瓷复合材料是一种具有耐高温、抗烧蚀、抗热冲击性的高韧性防热材料,能满足高超声速飞行器关键部位防热材料的需求。

    金属钽及合金表面MoSi2涂层的制备方法

    公开(公告)号:CN106702315A

    公开(公告)日:2017-05-24

    申请号:CN201611145219.6

    申请日:2016-12-13

    CPC classification number: C23C10/58

    Abstract: 本发明公开了一种金属钽表面MoSi2涂层的制备方法,包括:S10,提供钽片基材,并将所述钽片基材进行抛光和清洗以除去其表面的氧化物和杂质;S11,提供渗剂原料,包括活化剂、分散剂、钼粉和硅粉;S12,将所述钼粉、所述活化剂以及所述分散剂按照质量份数比:40‑50:5‑10:40‑55混合行成第一混合物;S13,将所述钽片基材埋入所述第一混合物中,并在保护气氛于1300‑1500℃保温4‑10h,取出后清洗干净;S14,将所述硅粉、所述活化剂以及所述分散剂按照质量份数比:20‑40:5‑18:55‑75混合行成第二混合物;S15,将步骤S13所获得的产物埋入所述第二混合物中,并在保护气氛于1100‑1400℃保温8‑20h,取出后清洗干净,获得含MoSi2涂层的样品。

    碳化钨/碳纳米管复合颗粒及其制备方法

    公开(公告)号:CN105597801A

    公开(公告)日:2016-05-25

    申请号:CN201510610692.6

    申请日:2015-09-23

    Abstract: 本发明提供一种碳化钨/碳纳米管复合颗粒的制备方法,包括:将碳纳米管置于强酸溶液中处理以获得改性的碳纳米管;将上述改性的碳纳米管置于仲钨酸铵溶液中,并加入聚乙二醇及一水合柠檬酸并进行搅拌以获得一混合溶液;往上述混合溶液中滴加有机酸直至pH为1.5~2.5,并在60℃~75℃的温度下持续搅拌以形成一溶胶;将上述溶胶在115℃~125℃的真空环境中干燥以形成一凝胶;将上述凝胶制成粉体并过筛,将过筛后的粉体在高纯度的氢气氛围下于550℃~750℃中还原以获得钨碳纳米复合颗粒;以及将上述钨碳纳米复合颗粒在惰性气氛下加热到800℃~1000℃反应,形成碳化钨/碳纳米管复合颗粒。本发明还提供一种上述方法获得的碳化钨/碳纳米管复合颗粒。

Patent Agency Ranking