一种基于滤波增强自编码器的电能表异常检测方法及装置

    公开(公告)号:CN117272055B

    公开(公告)日:2024-02-06

    申请号:CN202311567852.4

    申请日:2023-11-23

    Abstract: 本发明涉及一种基于滤波增强自编码器的电能表异常检测方法及装置,属于电力设备检测技术领域。将预处理后的多维时间序列数据输入自编码器和滤波器,输出第一重构多维时间序列数据和第一噪声分量,将第一重构多维时间序列数据输入自编码器和滤波器,输出第二重构多维时间序列数据和第二噪声分量;构建自编码器损失函数和滤波器损失函数,并基于自编码器损失函数和滤波器损失函数构建电能表异常检测损失函数以对自编码器和滤波器进行迭代训练,将训练好的自编码器作为电能表异常检测模型以对待检测多维时间序列数据进行检测。本发明减小了噪声和异常对自编码器的干扰,提高了重构(56)对比文件US 2023351158 A1,2023.11.02白雅玲.基于深度学习的客户用能分类及异常检测研究《.中国优秀硕士学位论文全文数据库 工程科技II辑》.2023,C042-2856.曹帅.基于深度学习的脑电信号分类方法研究《.中国优秀硕士学位论文全文数据库 医药卫生科技辑》.2018,E080-17.赵经宇.基于无监督学习的网络异常流量检测研究《.中国优秀硕士学位论文全文数据库 信息科技辑》.2023,I139-159.蔡木庆.基于深度学习的复杂时间序列分析和预测《.中国优秀硕士学位论文全文数据库 基础科学辑》.2021,A002-922.Jae Seok Do 等.LSTM-Autoencoder forVibration Anomaly Detection in VerticalCarousel Storage and Retrieval System.《Sensors》.2023,1-22.

    基于双路自编码器的电力调度监控数据异常检测方法

    公开(公告)号:CN117314680A

    公开(公告)日:2023-12-29

    申请号:CN202311259312.X

    申请日:2023-09-27

    Abstract: 本发明实施例提出了基于双路自编码器的电力调度监控数据异常检测方法,包括:将电力调度监控历史数据分解为趋势项、剩余项和离散量;构建趋势项自编码器重构趋势项和离散量,计算趋势项和离散量的重构误差;构建剩余项自编码器重构剩余项,计算剩余项的重构误差;结合趋势项、剩余项和离散量的重构误差计算模型的损失,将损失作为优化目标对模型进行训练;将待检测的电力调度监控数据同样进行分解,通过模型计算趋势项、剩余项和离散量的重构误差;结合趋势项、剩余项和离散量的重构误差计算输入数据的异常分数,据此判定输入的电力调度监控数据是否为异常。本发明实施例提供的技术方案,能够提升电力调度监控数据异常检测的准确率。

    一种基于特征选择的EMD-GRU短期电力负荷预测方法

    公开(公告)号:CN109886498B

    公开(公告)日:2022-03-22

    申请号:CN201910153816.0

    申请日:2019-03-01

    Abstract: 本发明实例提供了一种基于特征选择的EMD‑GRU短期电力负荷预测方法,包括:使用经验模态分解方法(EMD)将原始负荷序列分解成多个时序分量,并将所有的时序分量作为初始特征集合,由其构成预测模型的潜在输入变量;通过皮尔逊相关系数法对初始特征进行相关性分析,选出其中与原始负荷序列相关性较大的时序分量作为预测模型的输入特征;将被选择的时序分量结合原始负荷序列一起输入到门控循环单元网络(GRU)预测模型中,执行最终的负荷预测。根据本发明实施例提供的技术方案,可以提高短期电力负荷预测的准确率。

    一种基于密度距离综合决策的电力调度监控数据异常检测方法

    公开(公告)号:CN113608968A

    公开(公告)日:2021-11-05

    申请号:CN202110967252.1

    申请日:2021-08-23

    Abstract: 本发明实施例提出了一种基于密度距离综合决策的电力调度监控数据异常检测方法,包括:将电力调度监控历史数据作为输入数据集,通过局部可达距离与核密度估计来计算样本的局部密度;使用自然对数函数作为缩放函数,计算每个样本与其近邻的密度比;通过欧式距离找到每个样本密度比自身大的近邻,计算密度提升距离;将局部密度比与密度提升距离标准化后计算乘积,得到最终的异常分数,并判定数据中的异常样本。本发明实施例提供的技术方案,能够提升电力调度监控数据异常检测的准确率。

    一种基于预筛选动态集成的电力调度监控数据异常检测方法

    公开(公告)号:CN113112188A

    公开(公告)日:2021-07-13

    申请号:CN202110529491.9

    申请日:2021-05-14

    Abstract: 本发明实施例提出了一种基于预筛选动态集成的电力调度监控数据异常检测方法,包括:使用电力调度监控历史数据训练一定数量的基检测器;使用孤立森林方法对全部基检测器进行预筛选,筛选掉性能较差的基检测器;使用集成式KNN算法从历史数据中选择与待检测数据欧式距离较小的历史数据作为验证子集;使用最大值法根据筛选后剩余的基检测器在验证子集上的输出生成验证子集的假真值,计算基检测器在验证子集上的输出与假真值的皮尔逊相关系数;使用基于直方图的基检测器选择方法根据皮尔逊相关系数选择基检测器,平均所选基检测器的输出作为待检测数据的检测结果。本发明实施例提供的技术方案,能够提升电力调度监控数据异常检测的准确率。

    一种基于不平衡集成二分类的磁盘故障预测方法

    公开(公告)号:CN112465153A

    公开(公告)日:2021-03-09

    申请号:CN202011510541.0

    申请日:2020-12-18

    Abstract: 本发明公开了一种基于不平衡集成二分类的磁盘故障预测方法,包括:对磁盘的SMART数据进行采样,选取与磁盘故障相关的状态特征作为原始数据集,通过数据分区混合采样获得平衡数据集;将磁盘原始数据集和平衡数据集输入RF算法进行机器学习,分别训练出偏向多数类的原始模型和局部域加强和削弱模型,集成两种模型获得偏向外围边界的混合模型;根据放入原始磁盘数据集近邻的不平衡程度,自适应地选择三种模型,所获分类概率用来预测磁盘故障状态。本发明可以有效解决正、异常样本数量不均衡下磁盘故障预测难度大的问题,提高基于机器学习的磁盘故障预测能力。

Patent Agency Ranking