-
公开(公告)号:CN115080764A
公开(公告)日:2022-09-20
申请号:CN202210856458.1
申请日:2022-07-21
Applicant: 神州医疗科技股份有限公司
Abstract: 本发明涉及知识图谱技术领域,具体涉及基于知识图谱及聚类算法的医学相似实体分类方法及系统,本方法包括将医学数据库的数据构成三元组数据集,将三元组数据集作为训练集,对知识图谱学习模型进行训练,得到医学数据库的向量化表示的医学知识图谱,将其三元组通过均值池化层获得三元组的代表向量,利用无监督聚类算法Kmeans对实体和关系的代表向量进行聚类,得出医学知识图谱内的相似术语实体库,将同一簇内的实体作为正样本,将不同簇内的实体作为负样本,将正样本和负样本输入,训练实体相似分类模型,基于实体相似分类模型对实体进行相似判断;本发明解决人工标注相似实体分类繁琐的问题,实现对医学知识图谱无人工的准确构建。
-
公开(公告)号:CN115034225A
公开(公告)日:2022-09-09
申请号:CN202210654252.0
申请日:2022-06-10
Applicant: 神州医疗科技股份有限公司
Abstract: 本公开的实施例公开了应用于医学领域的词语处理方法、装置、电子设备和介质。该方法的一具体实施方式包括:获取待处理词语;生成待处理词语的词向量;基于词向量,生成待处理词语的语义向量;基于语义向量,确定语义向量对应的预测类别值;计算待处理词语与预设标准词语库中标准词语的相似度,得到相似度集合;基于预测类别值和相似度集合,从预设标准词语库中选择出目标标准词语。该实施方式通过生成待处理词语的词向量、语义向量,学习向量序列之间的语义关联,再根据确定的预测类别值和相似度集合,选择出待处理词语对应的目标标准词语。提高了医学词语标准化的效率和准确度,为医疗数据被应用提供了重要帮助。
-
公开(公告)号:CN114999654A
公开(公告)日:2022-09-02
申请号:CN202210750831.5
申请日:2022-06-28
Applicant: 神州医疗科技股份有限公司
Abstract: 本申请提供了一种基于知识图谱的糖尿病风险预测方法、装置、设备及介质,其中,该方法包括:使用待预测对象的第一病历数据对糖尿病知识图谱进行更新得到目标知识图谱;根据目标知识图谱中待预测年份节点的周围节点的第一节点向量,确定待预测年份节点的第二节点向量;根据第二节点向量和目标节点与待预测年份节点之间的第一关联关系向量得到第一拼接向量;目标节点为患病节点和/或未患病节点;第一关联关系向量是根据待预测年份节点与周围节点之间的第二关联关系向量确定的;将第一拼接向量和目标节点向量输入到糖尿病风险预测模型中输出第一余弦相似度;根据第一余弦相似度确定糖尿病的患病概率。通过该方法提高了糖尿病风险预测的准确性。
-
公开(公告)号:CN114925212A
公开(公告)日:2022-08-19
申请号:CN202210485506.0
申请日:2022-05-06
Applicant: 神州医疗科技股份有限公司
IPC: G06F16/36 , G06F16/335 , G06F16/35 , G06F16/951 , G06F40/205 , G06F40/295 , G16H10/60
Abstract: 本发明公开了一种自动判断并融合知识图谱的关系抽取方法及系统,在医学范围内预先建立了小范围的原始数据库,基于此原始数据库并结合医学知识图谱充分获取了待分类的实体的更多特征信息,如实体、句子、属性节点以及上下文信息,提高了模型可获得的信息量,提高关系分类任务的准确率,对不同类型的实体数据进行数据增强和调整超参数,进一步提高了关系分类抽取的准确率;将实体、句子、属性节点以及上下文信息等特征信息融合到关系抽取的任务中并结合注意力机制的计算方式对相关性属性节点进行了筛选,从而能根据节点的关键信息以及当前任务的重要程度做出筛选,考虑到不同语境下的节点所代表的含义,优化了目前构建医学术语集的准确性。
-
公开(公告)号:CN113393475A
公开(公告)日:2021-09-14
申请号:CN202110734983.1
申请日:2021-06-30
Applicant: 神州医疗科技股份有限公司
Abstract: 本申请实施例提供一种乳腺钼靶图像分割的装置、电子设备、医疗设备和介质,该电子设备包括存储器和处理器,所述存储器被配置为存储计算机程序,其中,所述处理器通过执行所述程序以实现如下乳腺钼靶图像分割的方法:获取乳腺钼靶图像;根据所述乳腺钼靶图像上非零像素的平均值确定目标分割线;根据所述目标分割线从所述乳腺钼靶图像上获取乳腺区域;基于所述乳腺区域进行数据分析,能够高效准确的从乳腺钼靶图像中获取乳腺区域,从而降低病灶检测过程中的噪音干扰(例如:在病灶检测过程中由胸大肌区域带来的噪音干扰),提升后续数据分析的准确率。
-
公开(公告)号:CN120032877A
公开(公告)日:2025-05-23
申请号:CN202510015011.5
申请日:2025-01-06
Applicant: 神州医疗科技股份有限公司
Abstract: 本发明涉及机器学习技术领域,具体公开一种术后心力衰竭风险预测方法、系统、电子设备和存储介质,该方法包括:确定用于术后心力衰竭风险预测的目标机器学习模型与多个目标特征指标,并根据每个样本患者的多个目标特征指标的具体值以及表征每个样本患者是否存在术后心力衰竭的样本标签,对所述目标机器学习模型进行训练,得到训练好的机器学习模型;将待测患者的多个目标特征指标的具体值输入至所述训练好的机器学习模型,得到所述待测患者的术后心力衰竭风险预测结果。本发明能够简化临床工作流程,提高术后心力衰竭风险评估的准确性和效率,最终实现更好的患者监测以及护理。
-
公开(公告)号:CN119904618A
公开(公告)日:2025-04-29
申请号:CN202411986034.2
申请日:2024-12-31
Applicant: 神州医疗科技股份有限公司
IPC: G06V10/25 , G06V10/26 , G06V10/28 , G06V10/62 , G06V10/74 , G06V10/764 , G06V10/82 , G06V20/62 , G06V20/54 , G08G1/017 , G06N3/0464 , G06N3/0442 , G06N3/045
Abstract: 本发明公开了一种图像识别方法、系统、电子设备和存储介质,涉及图像识别技术领域,方法包括:利用目标识别模型对预设图像进行识别;当从预设图像中识别出期望目标时,利用状态识别模型对期望目标所在的局部图像进行识别,确定期望目标的状态。本发明中,目标识别模型和状态识别模型更具有针对性,通过对期望目标和期望目标的状态进行分步识别,能更精识别期望目标和期望目标的状态,用户根据期望目标和期望目标的状态,能更精准的进行决策。
-
公开(公告)号:CN119903834A
公开(公告)日:2025-04-29
申请号:CN202411887946.4
申请日:2024-12-20
Applicant: 神州医疗科技股份有限公司
IPC: G06F40/258 , G06F18/22 , G06F16/38
Abstract: 本发明公开了一种大模型检索增强生成的自适应切片的文档切分方法,涉及大模型检索增强生成技术领域,方法包括:获取待切分文档,并对所述待切分文档按照标题类型进行切分,得到至少一组原始切块;根据任一原始切块对应的信息密度以及主题变化度,计算该原始切块的最优切分数量;根据所述最优切分数量对该原始切块进行切分处理。本发明先将文档按照层次标题进行切分,然后计算层次标题下的信息密度和主题变化度,以层级标题为单位,自动计算该层级标题下的最优切分大小,来指导文档的自适应切分,以提高后续检索和生成任务的效果。
-
公开(公告)号:CN119888401A
公开(公告)日:2025-04-25
申请号:CN202411912230.5
申请日:2024-12-24
Applicant: 神州医疗科技股份有限公司
IPC: G06V10/774 , G06N5/04 , G06V10/80 , G06V10/82 , G06N3/0464
Abstract: 本发明公开了基于融合注意力与动态卷积的机械图片数据集生成方法,涉及大模型技术领域,方法包括:获取至少一张待识别机械图像,将所有待识别机械图像输入至大模型处理模块,生成每张待识别机械图像对应的机械类型以及标注信息;将所述机械类型、所述标注信息以及对应的待识别机械图像进行关联,生成一组数据信息,将所有组数据信息进行整合生成机械图片数据集;所述大模型处理模块包括多模态融合层、动态注意力机制层以及融合注意力与动态卷积的时空增强网络模块。本发明能够通过大模型处理模块可以自动从原始机械图像中提取、整理并标注出机械图片数据集,提高数据集生成的效率和准确性。
-
公开(公告)号:CN119884817A
公开(公告)日:2025-04-25
申请号:CN202411912711.6
申请日:2024-12-24
Applicant: 神州医疗科技股份有限公司
Abstract: 本发明涉及基于多模态学习的目标分类方法、装置、设备及介质,该方法包括:将待处理数据输入至预训练的分类模型中,得到待处理数据对应的分类结果;分类模型包括输入层用于接收待处理数据,深度可分离卷积层用于对每种数据进行逐通道卷积,得到每种数据对应的第一特征图,对每种数据对应的第一特征图进行逐点卷积,得到每种数据对应的第二特征图,基于每种数据对应的第一特征图和第二特征图,得到每种数据对应的第三特征图;多尺度特征融合层用于对所有数据对应的第三特征图进行融合处理得到融合特征图;输出层用于根据融合特征图得到分类结果。通过本发明的方法,可减少计算量并保持精度,从而可使得基于分类模型得到的分类结果更加准确。
-
-
-
-
-
-
-
-
-