人脸识别认证中的隐私保护方法及系统

    公开(公告)号:CN117473543A

    公开(公告)日:2024-01-30

    申请号:CN202311139790.7

    申请日:2023-09-05

    Abstract: 本说明书实施例公开了一种人脸识别认证中的隐私保护方法,应用于服务器端,包括:响应于客户端的人脸识别认证请求,获取上传的待识别人脸随机向量和第一加密信息;其中,待识别人脸随机向量通过一次性的第一随机整数向量对待识别人脸特征变换后得到,第一加密信息利用预设的加密算法加密第一随机整数向量得到;检索预先存储的目标人脸随机向量和第二加密信息;其中,目标人脸随机向量通过一次性的第二随机整数向量对目标人脸特征变换后得到,第二加密信息对第二随机整数向量加密后得到;基于上述步骤中获得的数据,确定待识别人脸特征和目标人脸特征之间的相似度,再确定人脸识别认证结果。相应地,本发明公开了一种人脸识别认证系统。

    大模型预训练方法及装置
    52.
    发明公开

    公开(公告)号:CN117252250A

    公开(公告)日:2023-12-19

    申请号:CN202311176837.7

    申请日:2023-09-12

    Abstract: 本说明书一个或多个实施例公开了一种大模型预训练方法及装置。首先通过大模型的第一输入通道获取第一模态数据集,并通过大模型的第二输入通道获取第二模态数据集;然后将第一模态数据集中的模态数据输入到大模型中的第一编码器,得到第一表征信息,将第二模态数据集中包含的多种模态数据分别输入到大模型中的第二编码器,并将第二模态数据集对应第二编码器的输出结果进行表征融合处理,得到第二表征信息;最后将第一表征信息和第二表征信息映射到预设的特征空间,并基于特征空间的映射信息和预设的对比学习损失函数对大模型进行对比学习训练,得到预训练后的大模型,对比学习损失函数基于实体之间的表征相似性确定。

    一种模型训练的方法、装置、电子设备及存储介质

    公开(公告)号:CN117093862A

    公开(公告)日:2023-11-21

    申请号:CN202310983254.9

    申请日:2023-08-04

    Abstract: 本说明书公开了一种模型训练的方法、装置、电子设备及存储介质,基于联邦学习的思想,确定第一样本中的交叉样本和非交叉样本,再通过基于第一样本和第二样本训练的初始模型,确定交叉样本的辅助标注,将第一样本输入到目标模型的分类层,根据第一样本的分类结果和目标模型中各预设分类分别对应的预测层,得到第一样本的预测分类结果,最后再基于交叉样本的标注和辅助标注以及非交叉样本的标注,对该目标模型进行训练。在第一样本和第二样本包含的交叉样本较少时,也可基于预先训练完成的初始模型中对于第二样本的知识和第一节点中存储的各第一样本,训练得到准确的目标模型,在保证隐私数据的前提下,还保证了训练得到的目标模型的准确度。

    一种异常检测方法、装置、设备及可读存储介质

    公开(公告)号:CN115567371B

    公开(公告)日:2023-03-10

    申请号:CN202211460171.3

    申请日:2022-11-16

    Abstract: 本说明书公开了一种异常检测方法、装置、设备及可读存储介质,基于每个第一检测模型输出的第一训练样本的第一异常概率,对第一训练样本排序,得到第一训练样本对应于该第一检测模型的次序,针对每个第一训练样本,将该第一训练样本对应于每个第一检测模型的次序进行融合,得到该第一训练样本的第二异常概率作为标签,并根据各第一训练样本及其标签,训练第二检测模型,以根据训练后的第二检测模型,确定待检测事件的异常概率。可见,采用对各第一训练样本对应于第一检测模型的次序进行融合,解决了不同检测模型预测的异常概率分布不同的问题,用融合得到第二异常概率训练第二检测模型,提高了线上异常检测的响应效率和隐私信息的安全性。

    一种风控方法、装置、存储介质及设备

    公开(公告)号:CN115564450A

    公开(公告)日:2023-01-03

    申请号:CN202211556873.1

    申请日:2022-12-06

    Abstract: 本说明书公开了一种风控方法、装置、存储介质及设备,通过根据异常业务的业务数据对各异常业务进行聚类,得到各业务簇及各业务簇分别对应的典型业务。以针对每个典型业务,根据该典型业务的业务数据,通过解释模型确定该典型业务被识别为异常的原因。并根据剩余异常业务与各典型业务的相似度及各典型业务被识别为异常业务的原因,确定剩余异常业务被识别为异常业务的原因,以根据各异常业务被识别为异常业务的原因执行风控业务。可通过聚类确定用于输入解释模型的典型业务,基于模型输出的典型业务被识别为异常业务的原因确定其他异常业务被识别为异常业务的原因,减少输入模型的数据量,减少模型计算耗时,提升确定原因的效率以提升风控效率。

    一种数据处理方法、装置及电子设备

    公开(公告)号:CN110909775A

    公开(公告)日:2020-03-24

    申请号:CN201911092266.2

    申请日:2019-11-08

    Inventor: 刘腾飞

    Abstract: 本说明书实施例公开了一种数据处理方法、装置及电子设备,利用样本数据训练业务模型,以确定所述业务模型中的各预设特征在对应不同目标类业务时的特征参数,所述样本数据包括所述不同目标类业务的业务数据;按照各所述目标类业务分别调整所述业务模型中的所述特征参数,得到所述不同目标类业务各自的子模型,使得所述子模型进行对应的目标类业务处理。

Patent Agency Ranking