-
公开(公告)号:CN111044289A
公开(公告)日:2020-04-21
申请号:CN201911370022.6
申请日:2019-12-26
Applicant: 哈尔滨工业大学
Abstract: 本发明提出了基于闭环动态测量的大型高速回转装备对准误差测量方法,所述测量方法包括以下步骤:将每一个部件认为是一个理想刚体,三个位移自由度δx,δy,δz和三个角度自由度θx,θy,θz,计算出各个部件的几何偏差;将各个部件的几何偏差带入到误差累计求和公式中,借助多刚体系统理论和坐标的矩阵变换计算出多个相互连接的组件的误差累积量,得到总的误差Etotal;结合计算得到的总的误差Etotal对传感器的安装姿态误差进行补偿。本发明的基于闭环动态测量的大型高速回转装备对准误差测量方法,可以计算得到终端的对准误差值,进而通过软件算法将该误差补偿掉,以提高航空发动机单级转子的测量精度。
-
公开(公告)号:CN110906862A
公开(公告)日:2020-03-24
申请号:CN201911214416.2
申请日:2019-12-02
Applicant: 哈尔滨工业大学
Abstract: 本发明提供了一种大型高速回转装备几何形貌与质量特性一体化测量装置,包括平行设置在基座两侧的两个立柱、气浮轴系、调心调倾工作台、称重机构、翻转卡盘和起振机构;翻转卡盘调节被测转子的测量姿态,所述的气浮轴系设置在基座的中心,所述的气浮轴系由力矩电机带动,力矩电机的转轴末端固设有扭杆,扭杆的末端由励磁制动器制动,力矩电机上设有光栅测角机构,在两个立柱上滑动设置有四个横臂,且四个横臂两两一组,每个横臂的端部处均配置一球关节万向表架,在每一球关节万向表架的端部处配置一电感传感器。本发明通过单次装夹测得大型高速回转装备单级盘几何形貌参数与质量特性参数,测量集成化更高,节约测量时间与测量成本。
-
公开(公告)号:CN104789804B
公开(公告)日:2017-11-03
申请号:CN201510140995.6
申请日:2015-03-27
Applicant: 哈尔滨工业大学
Abstract: 一种钛合金颗粒增强镁基复合材料的制备方法,它涉及一种镁基复合材料的制备方法。本发明是要解决目前的镁基复合材料还无法同时具备强度较高和塑性较好的技术问题。本发明的制备方法为:(1)制备半固态熔融镁合金;(2)制备钛合金颗粒‑镁合金混合熔体;(3)制备钛合金颗粒增强镁基复合材料。本发明采用TC4(Ti‑6Al‑4V)钛合金颗粒作为镁合金的增强体,通过搅拌铸造方法以及控制钛合金颗粒的体积分数和颗粒尺寸大小,所制得的复合材料具有强度高和塑韧性好兼备的优异力学性能,与同体积分数同颗粒尺寸的常见陶瓷颗粒增强体制备的镁基复合材料相比,强度相差不大,而塑性明显好于后者。本发明主要应用于制备镁基复合材料。
-
公开(公告)号:CN103532449A
公开(公告)日:2014-01-22
申请号:CN201310533610.3
申请日:2013-11-01
Applicant: 哈尔滨工业大学
CPC classification number: H02M7/49
Abstract: 级联式多电平变换器的永磁同步电机驱动控制系统及其控制方法,属于电力电子控制技术领域的发明。它解决了现有新能源电动汽车上牵引电机输出谐波多、输出电能质量低,进而影响新能源电动汽车的安全性和舒适度的问题。在本发明中,摒弃了传统的牵引电机驱动器的架构,提出了基于串联级联式和并联级联式多电平变换器的拓扑结构和控制技术,除了能够实现电机的高性能驱动控制外,还解决了单一的直流电源供电问题,同时优化了控制方法,针对内嵌式永磁同步电机在低速、中速和高速过程中对电流谐波的不同要求,提出了更加合理的多电平电流波形输出设计。本发明适用于新能源汽车等需要高效率,高性能输出,单一电源提供能量来源的场合。
-
公开(公告)号:CN1979701B
公开(公告)日:2010-05-19
申请号:CN200610150998.9
申请日:2006-11-09
Applicant: 哈尔滨工业大学
Inventor: 王晓明
Abstract: 径向多极磁环的定量退磁加工系统及其检测方法,它涉及定量磁加工的技术领域,它是为了解决现有技术中缺乏有效地进行定量磁加工的装置及其方法的问题。本发明将磁环(7)置于退磁头(6)的一对极之间,磁环在单相交流电机的带动下进行高速旋转,磁通传感器(8)检测磁环的磁通量并与磁通表(12)设定的上限j和下限k值进行比较,当测量值大于j时,单片机控制电路(14)控制单相调压模块(2)增大激磁线圈(5)中的电流,直到测量值小于j,当测量值在j和k之间时磁环为合格品,当测量值小于k时磁环为不合格品。本发明的装置可用于对单极或径向多极充磁的永磁磁环的磁场强度幅值进行削减,其减磁的变化过程是接近平滑的,减磁量最小可达0.1%。
-
公开(公告)号:CN101266227A
公开(公告)日:2008-09-17
申请号:CN200810064499.7
申请日:2008-05-14
Applicant: 哈尔滨工业大学
Inventor: 王晓明
IPC: G01N27/90
Abstract: 检测子午胎钢丝帘线缺陷的涡流电磁检测探头及检测方法,它涉及一种检测子午胎钢丝帘线缺陷的无损探伤检测装置及检测方法。针对X射线透视的方法检验子午胎钢丝帘线缺陷,所用设备成本和维护费用高问题。线圈骨架装在磁罐内,线圈骨架上缠绕有激磁线圈,线圈骨架及磁罐与印刷绕组阵列绝缘粘接,印刷电路绕组阵列包括多个感应线圈,感应线圈与信号放大器连接,信号放大器与A/D转换器及单片机控制器和计算机连接。检测方法要先标定,然后按照定标时的扫描顺序对被检测的钢丝帘线子午胎的表面进行扫描,检测每个位置的涡流磁场分布,记录下来每个位置的数据,逐个比对标定与被检测子午胎钢丝帘线之间涡流磁场分布所对应的数据是否超过允许的差异。
-
公开(公告)号:CN119549691A
公开(公告)日:2025-03-04
申请号:CN202411726714.0
申请日:2024-11-28
Applicant: 哈尔滨工业大学 , 哈尔滨鑫润工业有限公司
Abstract: 一种适用于不同弦长的镍基高温合金环体本体的成型装置,它涉及燃气轮机部件铸造技术领域。本发明解决了现有浇注系统无法为镍基高温合金铸件的凝固部位提供补缩的问题。本发明的两个型腔分别位于浇注系统的左右两侧,且浇注系统分别与两个型腔的上部和下部连通,实现浇注;浇注系统包括浇口杯、直浇道、浇口窝、上部浇道和下部浇道,上部浇道和下部浇道上下平行布置并分别与两个型腔的上部和下部分散性连通,向型腔内补缩,直浇道竖直布置在上部浇道和下部浇道的几何中心,直浇道与上部浇道和下部浇道的接触部位连通,浇口杯和浇口窝分别安装在直浇道的上端和下端。本发明用于燃气轮机上护环的铸造。
-
公开(公告)号:CN110929353B
公开(公告)日:2024-06-25
申请号:CN201911213663.0
申请日:2019-12-02
Applicant: 哈尔滨工业大学
IPC: G06F30/17 , G06F30/20 , G06F111/10
Abstract: 本发明是一种基于单纯形算法的大型高速回转装备圆柱轮廓误差分离方法。包括以下步骤:建立大型高速回转装备圆柱轮廓测量模型;确定测头半径误差和测头支杆倾斜角:步骤3:通过单纯性优化算法确定待估参数,建立目标函数;对于每个截面轮廓的目标函数,采用单纯形寻优算法估计得到参数的估计值,通过估计值消除影响;采用单纯形寻优估计法对目标函数直接求解,得到大型高速回转装备圆柱轮廓测量模型的整体偏心误差、几何轴线倾斜误差和最小二乘半径的精确估计值;逐点分离多偏置误差。本发明可实现在不对测量模型和误差参数估计过程进行任何简化的前提下,同时实现对多个偏置误差参量的精确估计和分离,显著提高了误差分离准确性。
-
公开(公告)号:CN114354184B
公开(公告)日:2024-06-21
申请号:CN202111624091.2
申请日:2021-12-28
Applicant: 哈尔滨工业大学
IPC: G01M13/028 , G06F18/2135 , G06F18/24 , G06N3/048 , G06N3/084
Abstract: 本发明公开一种基于深度学习的大型回转装备主轴健康预警模型建立方法和装置,属于大型回转装备主轴健康监测与状态识别技术领域,解决现有缺少主轴健康预警模型有效地保证大型回转装备工作性能的同时能显著地降低经济损失的问题。本发明的方法包括:获取大型回转装备主轴状态振动信号;分别从时域、频域和时频域进行特征提取,获取多维特征;对多维特征进行降维处理,将降维处理后的多维特征划分为训练集和测试集;基于BP神经网络建立大型回转装备主轴健康预警模型,并利用训练集和测试集对大型回转装备主轴健康预警模型进行训练和测试,完成大型回转装备主轴健康预警模型的建立。本发明适用于大型回转装备主轴健康监测与状态识别。
-
公开(公告)号:CN111046579B
公开(公告)日:2024-05-31
申请号:CN201911370026.4
申请日:2019-12-26
Applicant: 哈尔滨工业大学
Abstract: 本发明提出了基于粒子群算法的大型高速回转装备误差分离优化方法,建立优化传感器安装角度优化目标函数;利用极大熵函数法对目标函数进行等价变换得到可微的优化目标函数;设定约束条件和搜索范围;利用粒子群算法对传感器S2、S3相对于S1的安装角度α和β进行寻优;根据寻优结果对最优安装角度对应的叶子编号进行确定。本发明根据粒子群算法优化得到的叶片编号安装三个传感器,对叶尖间隙数据进行测量并进行误差分离,可有效避免误差分离过程中的谐波抑制现象,提高误差分离精度。
-
-
-
-
-
-
-
-
-