-
公开(公告)号:CN113135759A
公开(公告)日:2021-07-20
申请号:CN202110440670.5
申请日:2021-04-23
Applicant: 北京科技大学
IPC: C04B35/58 , C04B35/622 , C04B35/626 , C04B35/63 , C04B35/64
Abstract: 一种溶液燃烧合成法制备高纯高透光性的AlON陶瓷的方法,属于陶瓷粉体制备技术领域。工艺过程为:(1)称取水溶性铝盐、水溶性有机物、有机燃料、氧化剂、金属硝酸盐或者无机酸,随后倒入适量去离子水,搅拌使化合物完全溶解;(2)将混合溶液100‑600℃的温度下发生燃烧反应后得到Al2O3和C的混合物;(3)将前驱物于1300‑1800℃的氮气气氛中反应0.1‑10小时,得到AlON粉末;(4)将得到的AlON粉末在空气中500‑900℃下除碳0.1‑10小时;(5)将AlON粉末压制成型,随后进行冷等静压;(6)将生坯在1800‑2000℃,氮气氛围下保温1‑20小时;(7)烧结后的透明陶瓷透光率可达80%,晶粒尺寸在100‑250μm之间,维氏硬度为15‑17GPa。本发明工艺简单,成本较低,煅烧后的粉体粒径小,无需球磨可直接干压成型,具有产业上的利用价值。
-
公开(公告)号:CN110255999B
公开(公告)日:2021-02-12
申请号:CN201910496942.6
申请日:2019-06-10
Applicant: 北京科技大学
Abstract: 本发明属于无机材料制备和电池材料技术领域,涉及一种碳氧双掺杂多孔空心碗形碳材料及其制备方法,该材料为碳质的碗形结构颗粒,分散性高,粒径分布窄,粒径可控,颗粒内部存在空心结构,形貌呈凹陷碗状,壁厚可控,碗壁上存在许多孔洞,孔包括微孔和介孔,比表面积高;具有氮氧元素双掺杂的特性。用于高体积比容量、循环稳定性的钾离子电池负极。钾离子电池由于钾全球储量丰富和氧化还原电压值低的特点,被认为是取代传统的价格高昂的锂离子电池候选者之一,但是,钾离子尺寸较大,导致钾离子电池尚缺少比容量高,循环稳定性和倍率性能好的电极材料。本发明材料用于钾离子电池电极,达到了增强钾离子电池稳定性,提高倍率性能,同时提高电池的体积比容量的目的。
-
公开(公告)号:CN110194441B
公开(公告)日:2020-12-29
申请号:CN201910459958.X
申请日:2019-05-29
Applicant: 北京科技大学
IPC: C01B21/072 , C04B35/581 , C04B38/08
Abstract: 一种空心球形氮化铝粉体材料及氮化铝多孔陶瓷的制备方法,属于无机材料制备领域。利用水热碳球形粉体为模板,分散于铝盐溶液中,使铝离子渗透入碳球;将粉末转移至炉中煅烧,在保护气氛中升温、保温;不进行降温操作,直接通入空气,继续升温、保温,进行二次煅烧,得到空心球形氧化铝粉体;将空心球形氧化铝作为原料,通过碳热还原法或氨解法,制备空心球形氮化铝粉体;将空心球形氮化铝、烧结助剂按比例混合制备混合粉末;将混合粉末与粘结剂按比例混合,制备喂料;将喂料采用注射成形技术制备出成形坯体;将成形坯体置于脱脂炉以一定升温速度升温度、保温进行脱脂;将脱脂坯在以一定速度升温烧结,保温后,制得高导热氮化铝多孔陶瓷。
-
公开(公告)号:CN109650442B
公开(公告)日:2020-10-30
申请号:CN201910032939.9
申请日:2019-01-14
Applicant: 北京科技大学
IPC: C01G31/02
Abstract: 一种制备铜掺杂钒氧化物介晶的方法,制备步骤如下:以铜盐、钒盐为原料,以水为溶剂,以有机胺为添加剂;将铜盐、钒盐加入到蒸馏水中,然后搅拌混合后,铜盐的浓度在0.01‑500mg/mL之间;钒盐的浓度在1‑1000mg/mL之间;继续加入有机胺,然后搅拌24小时,有机胺的浓度在0.1‑1000mg/mL之间;将混合物放入水热反应釜,于70‑220℃温度下保温0.5‑72小时;取出反应釜,冷却至室温后,打开容器,倒出沉淀,用蒸馏水和乙醇清洗;在干燥箱中50℃烘干,得到铜掺杂钒氧化物介晶目标粉末,尺寸在50纳米‑100微米之间。本发明方法可以制备出新颖的铜掺杂钒氧化物物介晶粉末,工艺较简单,易于推广。
-
公开(公告)号:CN110270692B
公开(公告)日:2020-08-25
申请号:CN201910497565.8
申请日:2019-06-10
Applicant: 北京科技大学
Abstract: 一种钨/稀土金属氧化物复合空心球形粉体的制备方法,属于无机材料制备领域。以水热碳质球为模板,分散于钨酸铵与稀土盐类混合溶液中,使钨酸根、稀土金属离子渗透入碳球,清洗后干燥;将干燥后的粉末在保护气氛中升温、保温;不进行降温操作,直接打开法兰,通入空气,进行二次煅烧;然后将得到的粉体在氢气气氛下两步煅烧,得到钨/稀土金属氧化物复合空心球形粉体。该材料有如下优点:一方面,球形形貌可以提高粉体的流动性,便于3D打印成形;另一方面,稀土金属元素氧化物的掺杂可细化钨晶粒尺寸,提高其强度、硬度;最后,颗粒内部空心结构的引入,也为制备一些特定的3D打印器件,例如多孔钨制品等,提供了原材料。
-
公开(公告)号:CN111138201A
公开(公告)日:2020-05-12
申请号:CN202010025232.8
申请日:2020-01-09
Applicant: 北京科技大学
IPC: C04B35/626 , C04B35/584
Abstract: 一种适合流延和注射成形的氮化硅粉体制备方法,属于陶瓷粉体制备技术领域。包括以下步骤:(1)称取一定量的氮化硅粉体,其形貌为不规则形状形貌;(2)将氮化硅粉体送入研磨进料口,通过喷嘴高速喷射气流,使粉体在研磨腔内碰撞、磨擦、剪切去除棱角;(3)通过调节进料速度、研磨气体压力和研磨次数,使氮化硅粉体得到充分研磨,经过收集器和除尘器进行收集物料。本发明采用高能气流对不规则形状氮化硅粉体进行整形和改性处理,提高粉体颗粒的球形度和流动性,以及粉体的松装密度、振实密度和比表面积,在同等流变行为下增加了流延成形浆料和注射成形喂料中氮化硅的体积分数,可解决因固体粉末颗粒含量低造成坯体初始密度低、烧结收缩率大、容易变形等问题。
-
公开(公告)号:CN110560700A
公开(公告)日:2019-12-13
申请号:CN201910945329.8
申请日:2019-09-30
Applicant: 北京科技大学
Abstract: 一种制备高致密度超细晶稀土氧化物掺杂钨合金的方法,属于粉末冶金领域。制备方法为:以偏钨酸铵、稀土硝酸盐、燃料、硝酸铵为原料,采用低温溶液燃烧合成法制备氧化物复合粉末前驱体,然后使用H2还原制得纳米稀土氧化物掺杂钨合金粉末;采用多步放电等离子烧结制备高致密度超细晶稀土氧化物掺杂钨合金。本发明采用的低温溶液燃烧合成法可达到分子级别的混合,得到的前驱体中氧化钨、稀土氧化物均匀混合,还原产物为合金粉末,无需后续特殊处理;SPS适用于难熔金属及难烧结材料的快速烧结,采用多步SPS可获得高致密度超细晶稀土氧化物掺杂钨合金,相对致密度可达96%~99%,平均晶粒尺寸≤300nm。本方法的原料简单易得,设备简单,工艺快捷,适合进行大规模生产。
-
公开(公告)号:CN107737951B
公开(公告)日:2019-09-10
申请号:CN201710968920.6
申请日:2017-10-18
Applicant: 北京科技大学
Abstract: 本发明提供了一种超细晶钨基气体火花开关电极的制备方法,属于粉末冶金粉末制备技术领域。具体制备方法为:使用溶液燃烧合成与氢还原相结合的方法制备稀土氧化物掺杂的纳米钨粉,将纳米钨粉与粘结剂混合制备成喂料,使用注射成形工艺将喂料制成坯体,通过溶剂脱脂与热脱脂相结合的工艺脱出生坯中的粘结剂,然后在1400~1650℃氢气气氛下烧结制成气体火花开关电极产品,其平均晶粒尺寸为0.2~1μm,耐烧蚀性能好。本方法使用湿化学方法制备纳米钨粉,稀土氧化物颗粒可以均匀细小地分散在钨基体中,且粉末的烧结活性高,注射成形工艺可以大批量、高精度地制备气体火花开关电极。
-
公开(公告)号:CN107604188B
公开(公告)日:2019-04-09
申请号:CN201710845484.3
申请日:2017-09-18
Applicant: 北京科技大学
Abstract: 本发明提供了一种制备梯度多孔钨的方法,属于多孔材料制备技术领域。将高纯钨粉采用气流磨进行分散处理后,可将原始钨粉的团聚体打开,得到完全分散的钨粉,再经分级处理后,可获得不同粒径大小的窄粒度分布钨粉,通过选取处理后的不同粒度大小的钨粉进行搭配并采用铺粉‑压制‑烧结或叠层铺粉‑热压烧结可制备梯度多孔钨。该方法所制备的梯度多孔钨孔隙特性可控、各层孔径大小及分布均匀,孔隙连通度好。通过选取两种或多种不同粒度的粉末进行搭配可灵活控制最终梯度多孔钨制品的层数及各层的孔隙特性。
-
公开(公告)号:CN106825599B
公开(公告)日:2019-03-05
申请号:CN201710038790.6
申请日:2017-01-19
Applicant: 北京科技大学
Abstract: 本发明提供了一种添加晶粒长大抑制剂的WC‑Co纳米粉末的制备方法,属于粉末冶金粉末制备技术领域。具体制备方法为:以偏钨酸铵、硝酸钴、燃料、硝酸铵、所需添加的晶粒长大抑制剂的金属盐和有机碳源为原料,采用低温燃烧合成法制备氧化物/碳复合粉末,然后在气氛保护下或者真空下进行碳化得到晶粒长大抑制剂掺杂的WC‑Co纳米粉末。本发明采用的低温燃烧合成法属于液相合成法,可以达到了分子级别的混合,这就使得碳化过程中碳质的扩散程短,反应温度和时间要求较低。另外本方法的原料简单易得,设备简单,工艺快捷,适合进行大规模生产。
-
-
-
-
-
-
-
-
-