-
公开(公告)号:CN109447891A
公开(公告)日:2019-03-08
申请号:CN201910018035.0
申请日:2019-01-09
Applicant: 北京理工大学
Abstract: 本发明公开的一种基于卷积神经网络的光谱成像系统的高质量成像方法,属于计算摄像学领域。本发明将高光谱图像成像过程与重建过程一起考虑,重建过程中分别考虑图像间的空间相关性和光谱相关性,使用残差学习加速网络的训练速度和收敛速度,优化重建网络的同时优化编码网络,使用GPU完成对整个网络的优化求解:使用cuDNN库加速网络运行速度;使用随机梯度下降法更新网络参数;逐块处理完成高光谱图像的重建。本发明能够高质量完成CASSI光谱成像系统的高光谱图像重建,在保证重建结果具备高空间分辨率和高光谱保真性的同时,提高高光谱图像重建的效率,扩展高光谱图像的应用范围。本发明可用于载人航天、地质勘测、农业生产和生物医学等多个领域。
-
公开(公告)号:CN109447890A
公开(公告)日:2019-03-08
申请号:CN201910018000.7
申请日:2019-01-09
Applicant: 北京理工大学
Abstract: 本发明公开的一种基于卷积神经网络的光谱成像系统的编码优化方法,属于计算摄像学领域。本发明应用于基于编码孔径快照光谱成像系统,将高光谱图像成像过程与重建过程一起考虑,优化重建网络的同时优化编码网络,并使用GPU完成对整个网络的优化求解:使用cuDNN库加速网络运行速度;使用随机梯度下降法更新网络参数;逐块处理完成高光谱图像的重建。本发明能够高质量地完成CASSI光谱成像系统的高光谱图像重建,在保证重建结果具备高空间分辨率和高光谱保真性的同时,大幅度提高高光谱图像重建的效率,扩展高光谱图像的应用范围。本发明可用于载人航天、地质勘测和植被研究等多个领域。
-