一种利用光纤萨格纳克干涉仪测量应变的方法

    公开(公告)号:CN105823429A

    公开(公告)日:2016-08-03

    申请号:CN201610166455.X

    申请日:2016-03-22

    CPC classification number: G01B11/161

    Abstract: 本发明提供了一种利用光纤萨格纳克干涉仪测量应变的方法,所述方法包括如下步骤:a)搭建级联Sagnac干涉仪测量系统,所述系统包括宽带光源泵浦源、第一掺杂稀土元素光纤、第二掺杂稀土元素光纤、一支波分复用器、第一光耦合器、第二光耦合器、第一光纤Sagnac环、隔离器、第二光纤Sagnac环、光谱仪;b)将第一光纤Sagnac环和第二光纤Sagnac环与可控应变的应变材料贴合,进行应变标定;c)逐渐增加应变的大小,光谱仪采集第二光纤Sagnac环输出的光谱,记录梳状谱移动的长度,拟合梳状谱波长偏移随应变变化的关系曲线;d)将标定好的应变测量系统与待测应变材料进行贴合;e)利用所拟合的梳状谱波长偏移随应变变化的关系曲线对待测应变材料进行测量。

    适用于真空环境下的异形基底光纤光栅传感器

    公开(公告)号:CN106840455B

    公开(公告)日:2019-08-27

    申请号:CN201710196245.X

    申请日:2017-03-29

    Abstract: 一种适用于真空环境下的异形基底光纤光栅传感器,其特征在于:包括温度传感器设计与温度传感器封装,其中温度传感器封装材料为铝合金,加工成异形基底,并选取裸光纤光栅两端用调整架固定,用环氧树脂将塑料套管粘结在光纤光栅两端,以作为防护层使用,然后将光纤光栅与APC/FC熔接,并接于调整好的光纤光栅解调仪用于监控固化时中心波长的变化,将栅区置于封装结构深槽中央,待中心波长值稳定后,使用环氧树脂对光纤光栅进行封装,并固化。

    基于光纤布拉格光栅和细芯光纤的温度与应变测量方法

    公开(公告)号:CN109798977A

    公开(公告)日:2019-05-24

    申请号:CN201811615947.8

    申请日:2018-12-27

    Abstract: 本发明公开了一种基于光纤布拉格光栅和细芯光纤的温度与应变测量方法,包括以下步骤:在细芯光纤上采用飞秒激光直写的方法刻写光纤布拉格光栅FBG;利用刻有FBG的细芯光纤与多模光纤熔接,多模光纤末端再熔接单模光纤构成的马赫曾德结构对FBG进行调制;得到温度和应变的变化量与谐振峰强度与波长的变化矩阵;通过光谱仪检测细芯光纤马赫曾德透射谱谐振峰的波长变化值△λ和强度变化值△P,带入步骤3的变化矩阵中,得出环境温度和应变的改变情况。本发明利用马赫曾德透射光谱被光纤布拉格光栅调制的特性,通过监测其线性测量区某个透射谐振峰的波长与强度变化,可以实现温度与应变两个参数的区分测量。

    基于飞秒激光直写FBG阵列的掺铒光纤激光器

    公开(公告)号:CN109616858A

    公开(公告)日:2019-04-12

    申请号:CN201811614367.7

    申请日:2018-12-27

    Abstract: 本发明公开了一种基于飞秒激光直写FBG阵列的掺铒光纤激光器,包括传感光纤,传感光纤上设有波分复用器、C波段掺饵光纤、L波段掺饵光纤、偏振控制器、光纤环形器、耦合器、泵浦源、光谱仪、FBG阵列、宽带反射镜;其中,FBG阵列通过飞秒激光直写单模光纤制得,单模光纤的纤芯刻写有三个并列的FBG光栅,且三个FBG光栅长度相等、反射波长不同。本发明采用飞秒激光透过光纤保护层在不除去涂层的单模光纤中直写周期分别为538nm、542nm和547nm且并列设置的光纤布拉格光栅作为选频器件,结合C波段和L波段掺铒光纤、泵浦源、偏振控制器及宽带全反镜构成线形腔光纤激光器,实现了波长可切换的单波长及双波长激光输出,且抑制了激光光谱中的边模,提高了波长稳定性。

    一种熔接长周期光纤光栅的双程MZ结构测量温度的方法

    公开(公告)号:CN106644155B

    公开(公告)日:2019-02-19

    申请号:CN201610887133.4

    申请日:2016-10-11

    Abstract: 本发明提供了一种熔接长周期光纤光栅的双程MZ结构测量温度的方法,所述温度测量方法包括如下步骤:a、搭接双程MZ结构,所述双程MZ结构包括光源、第一光耦合器、第二光耦合器以及第一光纤、第二光纤、第三光纤和第四光纤;b、将长周期光纤光栅熔接到所述双程MZ结构中,其中将刻有长周期光纤光栅的光纤两端分别与第三光纤和第四光纤熔接,所述长周期光纤光栅构成双程MZ结构的反射端;c、将b熔接长周期光纤光栅的双程MZ结构整体结构置于温箱中,改变温控箱的温度,利用光谱仪监测波长移动;d、绘制波长与温度变化的关系曲线,利用所述关系曲线对待测温度进行测量。本发明能够有效降低透射峰的宽度,提高测量的精确度。

    一种基于级联Sagnac干涉仪的折射率测量方法

    公开(公告)号:CN105784641B

    公开(公告)日:2019-01-18

    申请号:CN201610151204.4

    申请日:2016-03-16

    Abstract: 本发明提供了一种基于级联Sagnac干涉仪的折射率测量方法,所述方法包括如下步骤:a)搭建所述级联Sagnac干涉仪测量系统,所述系统包括宽带光源泵浦源、第一掺杂稀土元素光纤、第二掺杂稀土元素光纤、一支波分复用器、第一光耦合器、第二光耦合器、第一光纤Sagnac环、隔离器、第二光纤Sagnac环、光谱仪;b)将第一光纤Sagnac环和第二光纤Sagnac环与可控折射率的折射率溶液中,进行折射率标定;c)逐渐增加折射率的大小,光谱仪采集第二光纤Sagnac环输出的光谱,记录梳状谱移动的长度,拟合梳状谱波长偏移随折射率变化的关系曲线;d)将标定好的折射率测量系统置于待测折射率溶液中;e)利用所拟合的梳状谱波长偏移随折射率变化的关系曲线对待测折射率溶液进行测量。

    一种非接触式光纤光栅角量传感器及测试方法

    公开(公告)号:CN106525099B

    公开(公告)日:2018-12-07

    申请号:CN201610971256.6

    申请日:2016-10-28

    Abstract: 本发明公开了一种非接触式光纤光栅角量传感器,包括磁栅尺、转盘和磁头探测单元,其特征在于,所述的磁头探测单元由塑料外壳、缓震泡沫、录磁磁头、环氧树脂、金属套管、锥型管、光纤光栅和光纤连接器组成;光纤光栅角量传感器工作时,磁栅尺旋转,对磁栅尺与录磁磁头间的作用力的最大值进行计数,得到旋转物体的角量。本发明能够实现连续大范围测量角速度、角加速度;与现有技术相比测量范围大,精度高,测量装置安装方便简单。

    一种具有增敏效应的高灵敏度光纤光栅传感器

    公开(公告)号:CN106441387B

    公开(公告)日:2018-10-30

    申请号:CN201610895919.0

    申请日:2016-10-14

    Abstract: 本发明提供了一种具有增敏效应的高灵敏度光纤光栅传感器,包括光纤纤芯和包层,所述纤芯通过设置在所述包层内部的通孔而嵌入在所述包层内部,所述包层是沿着所述纤芯为轴的轴对称结构,从外到内依次进一步包括:对称设置的扁圆形端部,对称设置的中空内层部,以及夹在所述中空内层部之间的主体部,所述扁圆形端部和中空内层部之间具有第一凹陷区,间隔第一间距,所述主体部和所述中空内层部之间具有第二凹陷区,间隔第二间距,所述中空内层部中分别设置有与所述光纤纤芯的长度方向垂直的细槽。

    一种基于超声脉冲诱发光栅变形的用于测量应变的方法

    公开(公告)号:CN105890536B

    公开(公告)日:2018-09-28

    申请号:CN201610215074.6

    申请日:2016-04-08

    Abstract: 本发明提供了一种基于超声脉冲诱发光栅变形的用于测量应变的方法,所述测量应变的方法包括如下步骤:a)搭接光纤传感器应变测量系统,所述系统包括一段带有连续均匀光栅的光纤、超声波发生器和解调仪,所述的带有连续均匀光栅的光纤具有多段光栅,每段光栅栅格均匀分布,所述光栅之间间隔相同;b)将光纤传感器应变测量系统与待测应变材料贴合,记录所述解调仪采集到的离峰偏离主峰的间距;c)将步骤b)中所述的离峰偏离主峰的间距与离峰偏离主峰的间距随应变变化的关系曲线比对,得到材料应变大小。

    一种全金属化封装光纤光栅应变传感器的系统

    公开(公告)号:CN106482760B

    公开(公告)日:2018-09-21

    申请号:CN201610900139.0

    申请日:2016-10-14

    Abstract: 本发明提供了一种全金属化封装光纤光栅应变传感器的方法,包括宽带光源,光环形器,光纤光栅解调装置,光纤夹持装置,温度控制装置,金属合金注入、焊接、微动装置;其中,所述宽带光源与所述光隔离器连接,所述宽带光源发出的光通过单模光纤跳线传输至光环形器的输入端口;所述光环形器用于保证光纤中的信号光沿单一方向传输,光纤光栅反射回特定波长的光并沿原路返回,经光纤光栅反射后的光信号进入光纤光栅解调装置中;所述光纤光栅解调装置用于将其输入的反射光信号,由其内部的光电探测器接收并将其转化成电信号,该电信号经由以太网或者USB传输线传送至计算机,完成信号解调。

Patent Agency Ranking