-
公开(公告)号:CN109124623B
公开(公告)日:2021-03-19
申请号:CN201810554759.2
申请日:2018-06-01
Applicant: 东南大学
IPC: A61B5/369
Abstract: 本发明公开了一种基于三维非线性偏直接相干函数的脑电信号间效应连通性检测方法,包括如下步骤:(1)构造单输入多输出的非线性自回归模型;(2)应用FROLS算法对步骤(1)构造的模型进行系数估计;(3)对三维PDS进行形式变换,得到用频率响应函数描述的信号yi对yj的PDC的定义式;(4)应用Volterra级数核函数的多维傅里叶变换对SIMO NARX模型进行频域分析,计算出模型的非线性频率响应函数;(5)将步骤(4)计算出的非线性频率响应函数代入步骤(3)中的PDC定义式,得到三维NPDC,得出在同时考虑三维信号的情况下某一信号对另一信号的因果影响。该方法可以检测三维脑电信号之间的因果关系。
-
公开(公告)号:CN111553392A
公开(公告)日:2020-08-18
申请号:CN202010307109.5
申请日:2020-04-17
Applicant: 东南大学
Abstract: 本发明涉及一种基于卷积神经网络的细粒度犬类图像识别方法,所述方法包括以下步骤:步骤1:构建卷积神经网络FG-LANet;步骤2:构建大型预训练图像样本数据库并使用该数据库对网络进行预训练;步骤3:构建犬类图像样本数据库并使用该数据库对网络进行微调训练;步骤4:获得犬类品种识别器,使用训练好的卷积神经网络作为犬类品种识别器对犬类图像进行识别。该技术方案通过训练一种适用于犬类图像识别的卷积神经网络模型作为犬类品种识别器,将其集成入电子设备可后提高电子设备对犬类品种进行识别的正确率。
-
公开(公告)号:CN110706214A
公开(公告)日:2020-01-17
申请号:CN201910899952.4
申请日:2019-09-23
Applicant: 东南大学
Abstract: 本发明提供了融合条件随机与残差的三维U-Net大脑肿瘤分割方法,包括:对训练集进行三层级联网络架构训练,获得卷积神经网络的模型;通过卷积神经网络模型,对测试集进行测试,获得对应大脑肿瘤每一个分类的概率矩阵;对概率矩阵进行后处理,更新概率,获得最终的大脑肿瘤分割结果。本发明分步简化问题并且获得更好的效果,相较传统方法更有优势,其采用的网络具有更好的学习能力,并且引入残差块来减小网络层数加深带来的梯度爆炸、梯度消失和网络性能退化的影响;在最大程度上使用了三维空间的信息。
-
公开(公告)号:CN110292377A
公开(公告)日:2019-10-01
申请号:CN201910495542.3
申请日:2019-06-10
Applicant: 东南大学
IPC: A61B5/0476
Abstract: 本发明公开了一种基于瞬时频率和功率谱熵融合特征的脑电信号分析方法,包括以下步骤:(1)提取慢波睡眠期的正常脑电信号和早期帕金森病的脑电信号,分别计算其瞬时频率和功率谱熵,从而构成一个二维的时序特征;(2)将二维时序特征作为LSTM神经网络的输入并进行训练学习;(4)利用训练学习号的神经网络对待评估脑电信号进行分析。该方法效果良好,能区分帕金森病病人与正常人的脑电信号。
-
公开(公告)号:CN109035197A
公开(公告)日:2018-12-18
申请号:CN201810552230.7
申请日:2018-05-31
Applicant: 东南大学
CPC classification number: G06T7/0012 , G06T7/11 , G06T2207/10081 , G06T2207/20081 , G06T2207/20084
Abstract: 本发明公开了一种基于三维卷积神经网络的CT造影图像肾脏肿瘤分割方法。该方法首先粗略分割出CT造影图像中的肾脏区域,并对其中的肾脏和肿瘤分别标注,生成数据集,然后将训练集送入基于金字塔池化和逐步特征增强模块的卷积神经网络中训练,得到训练模型,利用得到的训练模型对新的肾脏数据进行预测,得到肾脏肿瘤的分割掩模。本发明还提出一种基于三维卷积神经网络的CT造影图像肾脏肿瘤分割系统,本发明主要解决了肾脏肿瘤难图像分割的问题,通过本发明能够直接得到肾脏肿瘤的分割掩模。
-
公开(公告)号:CN105929386B
公开(公告)日:2018-09-28
申请号:CN201610230971.4
申请日:2016-04-14
Applicant: 东南大学
Abstract: 本发明公开了一种基于高阶累积量的波达估计方法,属于信号处理技术领域。该方法利用等间距直线传感器阵列所接收到的观测信号,估计出信号源的波达方向及波达时间;包括以下步骤:步骤1、对观测信号做傅里叶变换后进行空域‑频域平滑处理;步骤2、构造出空域‑频域平滑处理后信号的四阶累积量矩阵;步骤3、利用迭代地部分SVD方法,根据四阶累积量矩阵构建观测信号的信号子空间和噪声子空间;步骤4、根据观测信号的信号子空间和噪声子空间之间的正交性,估计出信号源的波达方向及波达时间。本发明还公开了一种基于声线传播时间层析的海洋声层析方法及一种定位方法。本发明可大幅降低算法的计算复杂度,提高算法实时性并降低硬件资源消耗。
-
公开(公告)号:CN103150709B
公开(公告)日:2016-10-26
申请号:CN201310057984.2
申请日:2013-02-22
Applicant: 东南大学
Abstract: 本发明公开了一种基于伪牛顿法的四元数域彩色图像压缩感知恢复方法,将彩色图像二维矩阵转化到四元数域的二维矩阵,对四元数域的二维矩阵只进行一次压缩感知就能恢复原始的彩色图像,比传统的对彩色图像的RGB三个分量分别进行压缩感知要节约运算时间。本发明将四元数矩阵信号写成四元数的欧拉形式,用幅度和相位作为压缩感知优化问题新的约束项,比传统将彩色图像RGB三个通道的数据转化为三个实数二维矩阵分别处理的恢复结果更好。本发明的结果图像是按行进行压缩传感解码得到的图像与按列进行压缩传感解码得到的图像的均值,这样比单独按行处理或单独按列处理恢复的图像更为平滑。
-
公开(公告)号:CN105957117A
公开(公告)日:2016-09-21
申请号:CN201610264588.0
申请日:2016-04-26
Applicant: 东南大学
CPC classification number: G06T11/003 , G06T5/001 , G06T2207/10088
Abstract: 本发明公开了一种并行磁共振的图像重建方法,属于磁共振成像技术领域。该方法将用于单线圈MRI重建的二维k空间数据的相位条件扩展到适用于并行成像重建的三维k空间数据集;通过构造基于多线圈k空间数据的低秩数据矩阵,并利用矩阵填充的方法来重建这个数据矩阵从而实现并行磁共振图像的重建。从而可用较少的采样数据和更短的图像重建时间获得更好的重建图像质量,且重建过程中不需要自校正环节,可以更好地抑制噪声。本发明还公开了一种并行磁共振的图像重建装置及一种并行磁共振成像系统。
-
公开(公告)号:CN103106643B
公开(公告)日:2015-08-26
申请号:CN201310030711.9
申请日:2013-01-25
Applicant: 东南大学
IPC: G06T5/00
Abstract: 本发明公开了一种低采样率下四元数域彩色图像恢复的方法,属于数字图像处理技术领域。本发明首先在四元数域表达一幅彩色图像,即将彩色图像的R分量,G分量,B分量的值分别放在四元数的三个虚部里面;然后,利用均匀随机矩阵对原始整幅彩色图像进行下采样,得到采样后的部分彩色图像;然后,我们将部分彩色图像进行存储或者传输;最后,利用四元数的实数表达形式及四元数矩阵填充理论,通过采样后的部分彩色图像将原始彩色图像恢复出来。本发明方法利用四元数运算法则约束性强的特点,提高了低采样率情况下彩色图像恢复的精度,同时简化了采样时的复杂度和数据存储量。
-
公开(公告)号:CN104573729A
公开(公告)日:2015-04-29
申请号:CN201510037296.9
申请日:2015-01-23
Applicant: 东南大学
IPC: G06K9/62
Abstract: 本发明公开一种基于核主成分分析网络的图像分类方法,包括以下步骤:(1)输入并预处理训练图像,得到训练图像的局部特征矩阵,(2)建立一个两层的核主成分分析网络,获得训练图像的主特征向量,(3)并用获得的主特征向量训练分类器;为了验证分类的正确性,建立测试核主成分分析网络对测试图像进行测试。本发明通过构造一个两层的核主成分分析网络,能够获得图像的非线性特征,使得图像特征的描述更精确,分类也更为准确,对于图像分类问题有着更高的正确率。
-
-
-
-
-
-
-
-
-