-
公开(公告)号:CN109301246A
公开(公告)日:2019-02-01
申请号:CN201811142962.5
申请日:2018-09-28
Applicant: 东北大学秦皇岛分校
IPC: H01M4/583 , H01M10/054
Abstract: 本发明涉及一种硫掺杂硬碳材料、其制备方法及其作为负极的钾离子电池,所述硬碳材料具有多孔结构,所述硫原子至少部分分布在所述硬碳材料的内部。所述硬碳材料的制备方法包括:(1)将高硫煤酸洗,然后浸渍于碱性溶液中,制得预产品;(2)在保护性气氛下,将预产品进行热处理,制得硬碳材料;(3)将硬碳材料进行酸溶液浸泡、洗涤、过滤和烘干过程。本发明以高硫煤为原料,制得的硬碳材料孔径大小可以满足钾离子嵌入/脱出要求,与此同时,硫元素原位自掺杂于材料的表面和碳基体中,赋予材料新的电化学活性及更理想的孔道结构。本发明制得的碳材料中硫元素分布更均匀、生产成本更低廉。
-
公开(公告)号:CN108899538A
公开(公告)日:2018-11-27
申请号:CN201810795118.6
申请日:2018-07-19
Applicant: 东北大学秦皇岛分校
IPC: H01M4/505 , H01M4/525 , H01M10/054
Abstract: 本发明提供了一种三元钠离子电池正极材料、其制备方法以及钠离子电池。所述三元钠离子电池正极材料化学式为:Na0.67[Ni0.167Co0.167Mn0.67]1-xTixO2,其中,0<x<1,所述三元钠离子电池正极材料为球形颗粒,所述三元钠离子电池正极材料具有层状结构。所述制备方法包括:1)将含有二价镍盐、二价钴盐和二价锰盐的盐溶液与碱溶液混合,进行共沉淀反应,固液分离得到镍钴锰的碳酸盐;2)预烧镍钴锰的碳酸盐,得到三元镍钴锰氧化物;3)将三元镍钴锰氧化物、钠源和钛源混合,煅烧,得到所述三元钠离子电池正极材料。所述三元钠离子电池正极材料具有良好的循环稳定性以及放电电压平台。
-
公开(公告)号:CN108695512A
公开(公告)日:2018-10-23
申请号:CN201810613768.4
申请日:2018-06-14
Applicant: 东北大学秦皇岛分校
IPC: H01M4/52 , H01M10/0525
CPC classification number: H01M4/52 , H01M10/0525
Abstract: 本发明属于能源储能材料领域,涉及一种酸洗铁红作为负极材料的用途。所述酸洗铁红用作负极材料,或者所述酸铁铁红经改性后用作负极材料。本发明的方法以酸洗铁红为原料制备Fe2O3负极材料,降低了锂离子电池的生产成本,同时延伸酸洗铁红的应用链,提高酸洗铁红的资源利用率,减少环境污染。尤其是通过本发明所述改性的方法合成的改性的酸洗铁红用作负极材料具有优异的电化学性能,能够缓解目前的能源危机,为规模化生产带来巨大的经济效益和环保社会效益。
-
公开(公告)号:CN108695498A
公开(公告)日:2018-10-23
申请号:CN201810465818.9
申请日:2018-05-16
Applicant: 东北大学秦皇岛分校
IPC: H01M4/36 , H01M4/38 , H01M4/62 , H01M10/0525 , H01M10/054
CPC classification number: H01M4/362 , H01M4/387 , H01M4/62 , H01M4/625 , H01M4/628 , H01M10/0525 , H01M10/054
Abstract: 本发明公开了一种多孔碳内嵌锡基合金的电池负极材料及其制备方法,该复合材料由三维网状多孔碳包覆的纳米级锡基合金均匀镶嵌在三维网状碳结构上构成,其制备过程包括:采用NaCl作为模板,将其与碳源、锡源以及其它金属盐溶解,混合均匀,随后冷冻干燥以保持NaCl立方体结构,研磨后在管式炉中惰性或还原性气氛围中一定温度下进行热处理,洗涤除去NaCl模板,烘干后得到三维多孔网状碳内嵌锡基合金的复合材料。制备出的材料用于锂离子电池和钠离子电池负极,具有容量高,循环性能好且倍率性能优异等特点。而且制备工艺简单,对环境友好,性能可控,具有普适性和可放大性。
-
公开(公告)号:CN108550840A
公开(公告)日:2018-09-18
申请号:CN201810465819.3
申请日:2018-05-16
Applicant: 东北大学秦皇岛分校
Abstract: 三维网状碳内嵌锑基合金钾离子电池负极材料,包括三维网状结构的薄碳层和锑基合金颗粒,该锑基合金颗粒均匀内嵌在薄碳层之中;该材料的制备方法为:1)将NaCl、形成锑基合金的离子化合物及碳源溶于水中,搅拌3-12h制成混合溶液;2)将混合溶液冷冻、干燥去除水分以保持NaCl的立方结构;3)将上述物放入坩埚,在还原氛围下热处理,使碳源碳化为碳单质,金属离子被还原成金属单质,金属单质聚集形成合金;4)用去离子水洗涤除去NaCl,再烘干得产物,该材料容量高,循环性能好,倍率性能优良,具有稳定的充放电平台,解决了金属锑负极材料存在的体积膨胀率大,循环和倍率性能不佳的问题。
-
公开(公告)号:CN107706402A
公开(公告)日:2018-02-16
申请号:CN201711138248.4
申请日:2017-11-16
Applicant: 东北大学秦皇岛分校
IPC: H01M4/36
Abstract: 本发明提供了一种金属元素共掺杂的磷酸锰锂/碳复合正极材料及其制备方法。所述复合正极材料由磷酸锰锂和位于所述磷酸锰锂内部的碳层构成,其中所述磷酸锰锂中的锂、锰位被金属元素共掺杂,所述金属元素为非稀土金属元素。所述复合正极材料的制备方法包括:1)制备第一碳层包覆的锂位掺杂磷酸锂;2)将步骤1)制备的第一碳层包覆的锂位掺杂磷酸锂制备成金属元素共掺杂的磷酸锰锂/碳复合正极材料,第一碳层位于金属元素共掺杂的磷酸锰锂/碳复合正极材料的内部。本发明提供的正极材料电化学性能好,且粒径小,颗粒大小均匀,比表面积大,结晶性高;本发明的方法绿色环保、过程易控、成本低。
-
公开(公告)号:CN107482215A
公开(公告)日:2017-12-15
申请号:CN201710650719.3
申请日:2017-08-02
Applicant: 东北大学秦皇岛分校
Abstract: 本发明涉及一种三维多孔磷酸锰锂、其制备方法及用途,属于新能源材料制备技术领域。本发明的方法为:以饱和盐溶液为模板,利用冷冻干燥法制备磷酸锰锂。更具体的方法包括:1)向饱和盐溶液中加入锂源、磷酸铵盐和/或磷酸、锰源及可选的碳源;2)采用得到的混合溶液进行冷冻干燥;(3)对得到的粉状固体在保护性气氛下进行热处理、清洗,得到磷酸锰锂。本发明的方法新颖,为磷酸锰锂的制备提供了新思路,相比于已有制备磷酸锰锂正极材料的方法,具有工艺简单、绿色环保,原料廉价等优点,且得到的磷酸锰锂产品具有三维多孔结构,比表面积大,以其作为正极材料应用于电池中,能够提高电子电导率,提升正极材料的电化学性能。
-
公开(公告)号:CN119864372A
公开(公告)日:2025-04-22
申请号:CN202510062365.5
申请日:2025-01-15
Applicant: 东北大学秦皇岛分校
IPC: H01M4/139 , H01M4/1395 , H01M10/054
Abstract: 本发明提供了一种镁电池负极材料的界面处理方法,属于二次储能电池技术领域。所述方法为将四吡咯类化合物、粘结剂与有机溶剂混合后得到界面处理材料,将其均匀旋涂于镁电池负极的表面,然后烘干溶剂即可。所述镁电池负极包括镁箔、涂覆了负极浆料的铝箔、铜箔、镁合金、碳系材料;所述四吡咯类化合物包括酞菁类化合物、卟啉类化合物、合成四吡咯类化合物中的一种或多种。本发明的镁电池负极采用旋涂方式一步制备,成本低,且制备工艺步骤少,操作简单,适于规模化推广生产。
-
公开(公告)号:CN119569126A
公开(公告)日:2025-03-07
申请号:CN202411681427.2
申请日:2024-11-22
Applicant: 东北大学秦皇岛分校
IPC: C01G45/1228 , H01M4/88 , H01M4/1391 , H01M4/505 , H01M10/054
Abstract: 本发明提供了一种钾离子电池正极材料的熔盐辅助制备方法,包括以下步骤:S1、称取钾源、锰源置于球磨罐中;S2、再向球磨罐中加入钾源、锰源总质量1‑3倍的氯化钾,然后加入乙醇进行球磨处理,得混合料;S3、将混合料进行干燥,再进行热处理,热处理的温度为775‑800℃,时间为6‑7h,然后冷却至室温,得到热处理产物;S4、将热处理产物依次进行水洗、干燥、过筛,得到钾离子电池正极材料;本发明制备方法无需特殊烧结气氛,可以降低热处理温度,并实现原子尺度的均匀反应,热处理时间较短,所制备的正极材料可以实现极佳的倍率性能。
-
公开(公告)号:CN119315103A
公开(公告)日:2025-01-14
申请号:CN202411484633.4
申请日:2024-10-23
Applicant: 东北大学秦皇岛分校
IPC: H01M10/0566 , H01M10/058 , H01M10/0567 , H01M10/054
Abstract: 本发明提供了一种可充镁电池电解液及其制备方法,所述可充镁电池电解液包括三氟甲烷磺酸镁、氯化铝、磺酰胺基功能化添加剂以及醚类有机溶剂;本发明制备的可充镁电池电解液通过各组分之间的协同作用可以实现镁的可逆沉积‑溶出,赋予电解液与镁负极亲和性好、过电位小、镁沉积‑溶出效率高的特点,具有良好的应用前景;并且,本发明电解液采用室温搅拌方式一步原位制备,成本低,且制备工艺步骤少,操作简单,适于规模化推广生产。
-
-
-
-
-
-
-
-
-