-
公开(公告)号:CN111397168B
公开(公告)日:2021-12-24
申请号:CN202010210746.0
申请日:2020-03-24
Applicant: 珠海格力电器股份有限公司
IPC: F24F11/86 , F24F11/64 , F24F11/49 , F24F140/20
Abstract: 本发明涉及一种空调系统的控制方法、装置、控制设备、介质和空调系统,获取空调系统的当前工作参数;确定所述当前工作参数与基准工作参数之间的相对关系;根据所述相对关系控制压缩机由基准排气温度调节至目标排气温度下工作,和/或控制所述压缩机由基准频率上限调节至目标频率上限下工作。从而使空调系统的压缩机的排气温度和/或频率上限满足当前连接管长度下的需求,减少冷媒在闪蒸器内的堆积,减少压缩机补气曾晗过程中吸气带液,使空调系统的运行可靠性高。
-
公开(公告)号:CN111397101B
公开(公告)日:2021-10-29
申请号:CN202010183149.3
申请日:2020-03-16
Applicant: 珠海格力电器股份有限公司
Abstract: 本发明提供一种空调控制方法、装置、存储介质及空调,所述方法包括:在所述空调制冷运行的情况下,当所述空调进入防冻结控制时,判断当前时间距上次进入防冻结控制的时间的间隔时间是否小于设定时间阈值;若判断所述间隔时间小于所述设定时间阈值,则根据所述空调在当前的环境温度和设定温度下进入防冻结控制的次数对压缩机目标频率进行补偿。本发明提供的方案能够避免机组频繁进入防冻结控制,达到低温持续制冷不衰减的效果。
-
公开(公告)号:CN111397104B
公开(公告)日:2021-08-03
申请号:CN202010212060.5
申请日:2020-03-24
Applicant: 珠海格力电器股份有限公司
IPC: F24F11/46 , F24F11/84 , F24F11/64 , F24F11/61 , F24F140/20
Abstract: 本发明涉及一种空调系统的控制方法、装置、控制设备、介质和空调系统,所述方法包括:获取当前连接管的当前温差;确定所述当前温差与基准温差之间的相对关系;根据所述相对关系控制电子膨胀阀由基准开度调节至目标开度下工作;其中,所述当前温差为所述当前连接管的冷媒进口温度与所述当前连接管的冷媒出口温度的差值的绝对值。上述空调系统的控制方法、装置、控制设备、介质和空调系统,根据当前温差与基准温差之间的相对关系控制电子膨胀阀由基准开度调节至目标开度下工作,从而使电子膨胀阀的开度满足当前连接管长度下的需求,保证在当前连接管长度蒸发器中冷媒流量合适,以使蒸发器的能效充分发挥,从而保证整机的能效充分发挥。
-
公开(公告)号:CN112762589A
公开(公告)日:2021-05-07
申请号:CN202110179178.7
申请日:2021-02-09
Applicant: 珠海格力电器股份有限公司
IPC: F24F11/88 , F24F11/67 , F24F1/0003 , H05K7/20
Abstract: 本发明提供一种散热装置、空调机组及其控制方法。散热装置包括散热结构和换向结构,所述换向结构具有第一连通口、第二连通口、第三连通口和第四连通口,所述第一连通口与所述散热结构的入口连通,所述第二连通口与所述散热结构的出口连通。本发明提供的散热装置、空调机组及其控制方法,通过设置换向结构根据空调机组的工作模式调节进入散热结构内冷媒流向,保证电器盒内的发热元器件均能够采用正常的冷媒进行降温,从而使进入散热结构的温度不会太高或太低,保证散热效果的同时避免温度过高或过低而影响发热元器件的正常工作,同时取消一个电子膨胀阀,减少机组装配时产生线圈接反的风险,减少售后故障。
-
公开(公告)号:CN112254311A
公开(公告)日:2021-01-22
申请号:CN202011098712.3
申请日:2020-10-14
Applicant: 珠海格力电器股份有限公司
IPC: F24F11/84 , F24F11/61 , F24F11/64 , F24F140/20
Abstract: 本发明公开了一种电子膨胀阀的控制方法及空调,包括步骤:划分多个流量区间,对应每个流量区间设置一个修正参数;根据电子膨胀阀的当前流量所对应的流量区间获取该流量区间对应的修正参数,将电子膨胀阀的当前更新周期修正为预设周期与该流量区间对应的修正参数之和。本发明通过在不同的流量区间改变电子膨胀阀的更新周期,对电子膨胀阀更新速率进行修整,即改变电子膨胀阀开度步数的调节频率,满足空调系统在不同运行状态下对冷媒流量的需求,达到节流的效果。同时防止排气温度变化延时引起电子膨胀阀输入控制信号滞后导致电子膨胀阀开度反复过调的问题,提高机组运行稳定性。
-
公开(公告)号:CN111219841B
公开(公告)日:2020-12-25
申请号:CN201911183406.7
申请日:2019-11-27
Applicant: 珠海格力电器股份有限公司
IPC: F24F11/30 , F24F11/64 , F24F11/65 , F24F11/77 , F24F11/86 , F24F11/88 , F24F110/12 , F24F140/20
Abstract: 本发明公开一种高温下持续制冷控制方法、装置及空调设备。其中,该方法包括:在机组进入制冷模式后,检测室外环境温度;如果室外环境温度高于第一预设高温,则基于机组的外风机冷凝器的管温控制机组进入高温制冷模式;其中,所述高温制冷模式包括以下操作至少之一:控制压缩机频率降低、控制外风机转速升高、控制内风机转速降低。通过本发明,解决了现有技术中机组在超高温环境下保护停机,无法持续运行的问题。通过外机冷凝器管温和室外环境温度,精确选择保护温度,同时控制其他参数,避免系统压力过高,达到在超高温环境温度下,系统也能够持续制冷运行的目的。
-
公开(公告)号:CN111520896A
公开(公告)日:2020-08-11
申请号:CN202010393205.6
申请日:2020-05-11
Applicant: 珠海格力电器股份有限公司
IPC: F24F11/871 , F24F11/64 , F24F11/61 , F24F110/12 , F24F140/10
Abstract: 本发明公开了一种空调制热的外机风机控制方法及空调系统,根据室外温度确定外机风机的电压后启动压缩机,启动压缩机后根据室外机的压力调节可控硅输出导通比以调整外机风机转速;外机风机先以最大转速运行,在其运行第一预设时间t1之后根据室外温度确定外机风机的第一转速;每隔第二预设时间t2检测室外机的压力值,当室外机当前压力值Pd≤2.8MPa时,可控硅输出导通比为100%,当3.5MPa≥Pd>2.8MPa时,可控硅输出导通比为a%;当Pd>3.5MPa时,Pd>Pd1时可控硅输出导通比a%降低5%,当Pd=Pd1时可控硅输出导通比a%降低2%,当Pd<Pd1时可控硅输出导通比a%不变。与现有技术比较,本发明避免系统压力过高而频繁触发系统停机保护,影响空调系统在高温环境的正常运行的情况。
-
公开(公告)号:CN109945430B
公开(公告)日:2020-08-07
申请号:CN201910187169.5
申请日:2019-03-13
Applicant: 珠海格力电器股份有限公司
Abstract: 本申请涉及一种座吊机运行防护方法、装置、系统及座吊机,当座装时根据座吊机的最大制热与最小制冷确定座吊机的换热器的一个铜管弯头,当吊装时同样的确定一个铜管弯头,在座吊机运行过程中通过获取两个铜管弯头的温度数据,分别记为座装最佳温度和吊装最佳温度。然后根据座装最佳温度和吊装最佳温度与对应的预设温度条件进行对比分析,当座装最佳温度或吊装最佳温度不满足相应的预设温度条件时,对座吊机的变频机组进行调节。通过上述方案可以使得座吊机在座装或者吊装时均能够在温度数据不满足预设温度条件时,及时的对座吊机的变频机组进行调节,从而使得座吊机安全稳定运行,有效地提高了座吊机的运行可靠性。
-
公开(公告)号:CN111397168A
公开(公告)日:2020-07-10
申请号:CN202010210746.0
申请日:2020-03-24
Applicant: 珠海格力电器股份有限公司
IPC: F24F11/86 , F24F11/64 , F24F11/49 , F24F140/20
Abstract: 本发明涉及一种空调系统的控制方法、装置、控制设备、介质和空调系统,获取空调系统的当前工作参数;确定所述当前工作参数与基准工作参数之间的相对关系;根据所述相对关系控制压缩机由基准排气温度调节至目标排气温度下工作,和/或控制所述压缩机由基准频率上限调节至目标频率上限下工作。从而使空调系统的压缩机的排气温度和/或频率上限满足当前连接管长度下的需求,减少冷媒在闪蒸器内的堆积,减少压缩机补气曾晗过程中吸气带液,使空调系统的运行可靠性高。
-
公开(公告)号:CN111397101A
公开(公告)日:2020-07-10
申请号:CN202010183149.3
申请日:2020-03-16
Applicant: 珠海格力电器股份有限公司
Abstract: 本发明提供一种空调控制方法、装置、存储介质及空调,所述方法包括:在所述空调制冷运行的情况下,当所述空调进入防冻结控制时,判断当前时间距上次进入防冻结控制的时间的间隔时间是否小于设定时间阈值;若判断所述间隔时间小于所述设定时间阈值,则根据所述空调在当前的环境温度和设定温度下进入防冻结控制的次数对压缩机目标频率进行补偿。本发明提供的方案能够避免机组频繁进入防冻结控制,达到低温持续制冷不衰减的效果。
-
-
-
-
-
-
-
-
-