一种大数据多区间查询条件下的基数估计方法及装置

    公开(公告)号:CN103544258A

    公开(公告)日:2014-01-29

    申请号:CN201310484503.6

    申请日:2013-10-16

    CPC classification number: G06F17/30864

    Abstract: 本发明涉及一种大数据多区间查询条件下的基数估计方法及装置,包括以下步骤:按照数值属性对大数据预先划分成多个分区;建立树形索引结构,每个分区作为树形索引结构的一个节点;获取待写入树形索引结构的数据源,对支持区间查询条件的数据源进行倒排索引处理;将经过倒排索引处理的数据源写入树形索引结构中的节点内,将数据源的相应部分分别写入数据文件及基数估算器内;根据区间查询条件在树形索引结构中查询满足区间查询条件的节点,得到节点中的基数估算器,对基数估算器进行逻辑处理,得到基数估算值。本发明通过降低数据的计算精度提高基数统计效率,在任意多区间查询条件下,具备较高的查询效率,使用了大数据增量更新技术提高索引数据在线更新效率。

    基于生成对抗网络的恶意代码检测方法

    公开(公告)号:CN111832019B

    公开(公告)日:2024-02-23

    申请号:CN202010524261.9

    申请日:2020-06-10

    Abstract: 本发明涉及一种基于生成对抗网络的恶意代码检测方法,包括:采集恶意代码样本集和良性样本集;提取恶意代码样本集和良性样本集中每一样本的静态特征和动态特征;将每一样本的静态特征和动态特征进行组合,得到每一样本组合特征;将所有样本组合特征输入预先设置的生成器G中,生成对抗样本集;将对抗样本集输入预先设置的判别器D中,判别每个对抗样本是否为恶意代码,并标记是否为恶意代码的标签,再将附带标签的对抗样本集反馈到生成器G中,持续优化所述生成器G;将附带标签的对抗样本集作为训练集进行训练,得到恶意代码分类模型;基于恶意代码分类模型检测待测样本是否为恶意代码。本发明提高了恶意代码检测的准确度和效

Patent Agency Ranking