-
公开(公告)号:CN112836493A
公开(公告)日:2021-05-25
申请号:CN202011404000.X
申请日:2020-12-04
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F40/226 , G06F40/284 , G06F16/33
Abstract: 本发明公开了一种转写文本校对方法及存储介质,包括,基于预先构建的校对样本库对待校对文本按照不同文本粒度进行分析校对,获得对应的候选方案集;根据所述候选方案集确定校对方案,并通过所述校对方案确定校对结果。本发明方法基于预先构建的校对样本库对待校对文本按照不同文本粒度进行分析校对,获得对应的候选方案集;根据所述候选方案集确定校对方案,由此从不同的文本粒度出发确定校对方案,提高了转写文本的准确性和语义的合理性。
-
公开(公告)号:CN112632597A
公开(公告)日:2021-04-09
申请号:CN202011420230.5
申请日:2020-12-08
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种数据脱敏方法、装置可读存储介质,其中方法包括:根据获取的用户提交的数据文件通过预先训练的标注模型对所述数据文件中的敏感数据进行标注,以获得标注文件;利用预设评测规则对与所述标注文件的文件类型相匹配的脱敏算法进行评测;根据用户从评测结果中选取的脱敏算法完成对所述标注文件的脱敏。本发明利用预设评测规则对与标注文件的文件类型相匹配的脱敏算法进行评测;根据用户从评测结果中选取的脱敏算法完成对标注文件的脱敏,由此可以通过规则评测和用户选择确定对应的脱敏算法,具有广泛的适用性。
-
公开(公告)号:CN112085614A
公开(公告)日:2020-12-15
申请号:CN202010778007.1
申请日:2020-08-05
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06Q50/00 , G06F16/9536
Abstract: 一种基于时空行为数据的跨社交网络虚拟用户身份对齐方法,主要步骤为:1)预处理用户在社交网络上产生的时空行为数据,生成用户时空行为序列;2)基于时空行为序列数据定义并计算社交网络间任意两用户的相似度;3)构建以社交网络用户为节点的二部图,相同社交网络用户节点间无边,不同社交网络用户节点间边的权重等于用户相似度;4)计算二部图的最大权匹配;5)基于最大权匹配结果生成虚拟身份对齐结果。本发明能够为全方位分析用户在社交网络中扮演的角色、准确估计用户真实属性提供重要理论基础与技术支撑,所需要数据在现实社交网络中易于获取,计算过程易于通过分布式框架进行,可以在大规模复杂网络中快速做到虚拟用户身份对齐。
-
公开(公告)号:CN107135281B
公开(公告)日:2020-03-31
申请号:CN201710146433.1
申请日:2017-03-13
Applicant: 国家计算机网络与信息安全管理中心 , 北京信息科技大学
Abstract: 本发明实施例提供一种基于多数据源融合的IP地域类特征提取方法,包括:步骤1、基于现有的IP地址定位数据库,计算每一定位数据库的权威度;步骤2、基于现有的IP地址定位数据库,计算每一定位数据库中定位数据的完整度;步骤3、根据步骤1和步骤2中的每一定位数据库的权威度和每一定位数据库中定位数据的完整度,确定定位数据的可信度;步骤4、根据定位数据的可信度,选取定位数据构建IP地域类特征知识库。
-
公开(公告)号:CN110633366A
公开(公告)日:2019-12-31
申请号:CN201910697992.0
申请日:2019-07-31
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明提出了一种短文本分类方法、装置和存储介质,用以从有限的训练数据中获取泛化能力强并且较为准确的分类特征,提高短文本分类的准确性。所述短文本分类方法,包括:获取待分类短文本;将所述待分类短文本输入到多层分类器中,其中,所述多层分类器为利用训练样本和所述待分类短文本所属目标领域的领域知识图谱进行训练得到的,每一层分类器提取不同的文本特征进行训练;根据所述多层分类器的输出结果,确定所述待分类短文本对应的文本类别。
-
公开(公告)号:CN109815789A
公开(公告)日:2019-05-28
申请号:CN201811514183.3
申请日:2018-12-11
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院自动化研究所
Abstract: 本发明涉及人脸检测技术领域,具体涉及一种在CPU上实时多尺度人脸检测方法与系统及相关设备,目的在于降低人脸检测的硬件成本,提高人脸检测的速度与准确度。本发明的人脸检测系统包括:特征提取模块、多尺度检测模块和非极大值抑制模块。其中,特征提取模块配置为:从待检测图像中提取关键特征,得到多尺度的待检测特征图;多尺度检测模块配置为:根据多尺度的待检测特征图预测人脸得分和相应的位置;非极大值抑制模块配置为:根据人脸得分进行非极大值抑制,从而得到检测结果。本发明降低了人脸检测的硬件成本,提高了多尺度人脸检测的速度与准确度,能在CPU上实现准确率较高的多尺度人脸检测功能,继而可以应用在手机等平台上。
-
公开(公告)号:CN105871630B
公开(公告)日:2019-03-05
申请号:CN201610370749.4
申请日:2016-05-30
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明提出了一种确定网络用户的上网行为类别的方法,该方法,包括:提取每个待测网络用户的上网行为特征,并通过文档向量空间模型的量化方法形成用户行为特征矩阵X;根据所述用户行为特征矩阵X,通过概率潜在语义分析方法PLSA和EM算法,得到行为倾向集合T以及“用户‑倾向”概率分布矩阵D;根据所述用户行为特征矩阵X,通过支持向量机SVM算法,得到“特征词‑类别”概率分布矩阵C;通过矩阵乘法运行T×C得到“倾向‑类别”映射矩阵M;通过矩阵乘法运行D×M得到“用户‑类别”概率分布矩阵Y;根据任一待测网络用户在各个类别上的概率分布情况,将所述任一待测网络用户分类到概率值最大的类别中。
-
公开(公告)号:CN109190750A
公开(公告)日:2019-01-11
申请号:CN201810737975.0
申请日:2018-07-06
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院自动化研究所
Abstract: 本发明涉及深度学习技术领域,具体提供了一种基于对抗生成网络的小样本生成方法及装置,旨在解决如何在少量样本数据的情况下利用生成对抗网络生成样本数据的技术问题。为此目的,本发明提供的基于对抗生成网络的小样本生成方法能够基于对抗生成网络并根据随机噪声和标签信息,生成小样本类型对应的样本。在此过程中,本发明采用迁移学习和批量训练的方法对对抗生成网络进行网络训练,使生成对抗网络可以有效迁移应用于少量样本的对抗生成网络样本生成任务中。
-
公开(公告)号:CN104408659B
公开(公告)日:2017-12-19
申请号:CN201410592639.3
申请日:2014-10-29
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06Q50/00
Abstract: 本发明公开了一种基于社交应用信息传播模式的评估方法及系统。该方法包括:对社交应用的信息传播过程进行分析和抽象,建立社交应用信息传播模式;基于社交应用信息传播模式,按照层次关系将社交应用信息传播风险分解为各项因素,并根据各项因素间的相互关系将各项因素按照层次关系进行聚集组合,生成虚假信息传播风险评估模型;其中,虚假信息传播风险评估模型的层次关系具体包括:系统层、实体层、以及风险点层;以虚假信息传播风险评估模型的风险点层中的风险点为基础原始数据,对该社交应用面临的虚假信息传播威胁进行评估。
-
公开(公告)号:CN105871630A
公开(公告)日:2016-08-17
申请号:CN201610370749.4
申请日:2016-05-30
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明提出了一种确定网络用户的上网行为类别的方法,该方法,包括:提取每个待测网络用户的上网行为特征,并通过文档向量空间模型的量化方法形成用户行为特征矩阵X;根据所述用户行为特征矩阵X,通过概率潜在语义分析方法PLSA和EM算法,得到行为倾向集合T以及“用户?倾向”概率分布矩阵D;根据所述用户行为特征矩阵X,通过支持向量机SVM算法,得到“特征词?类别”概率分布矩阵C;通过矩阵乘法运行T×C得到“倾向?类别”映射矩阵M;通过矩阵乘法运行D×M得到“用户?类别”概率分布矩阵Y;根据任一待测网络用户在各个类别上的概率分布情况,将所述任一待测网络用户分类到概率值最大的类别中。
-
-
-
-
-
-
-
-
-