-
公开(公告)号:CN115747685A
公开(公告)日:2023-03-07
申请号:CN202211448410.3
申请日:2022-11-18
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种基于深冷多面轧制制备的低密度高比强度β相镁锂合金的制备方法,包括如下步骤:将β单相镁锂合金在液氮中进行深冷处理;将所述深冷处理后的β单相镁锂合金进行多面轧制,所述多面轧制取两对平面分别承担一半的总应变量;每道次间均将块状合金浸泡于液氮中,总应变量与40%~80%常规轧制相同;经过液氮预浸泡以及道次间浸泡使合金的温度急剧下降,位错运动减缓并持续积累,较大的过冷度使晶界无法快速迁移,呈现了高位错密度,小晶粒尺寸的显微组织形态,为合金机械性能的强化提供了位错强化和细晶强化的作用,最终实现了纯β相镁锂合金的室温抗压缩性能为297MPa,比强度大约为226kNm/kg。
-
公开(公告)号:CN113278857B
公开(公告)日:2022-06-28
申请号:CN202110360970.2
申请日:2021-04-02
Applicant: 中国兵器科学研究院宁波分院 , 哈尔滨工程大学
Abstract: 本发明公开了一种高强韧镁合金,其特征在于,镁合金的质量百分比组成为Sm:1.7wt%~2.5wt%,Mn:0.4wt%~0.8wt%,Ca:0.2wt%~0.6wt%,Zn:0.2wt%~0.6wt%,余量为Mg及不可避免的杂质。本发明通过控制Sm、Mg、Zn、Ca、Mn的添加量,一方面:稀土Sm与Mg、Zn、Ca形成大量的MgZnCaSm和MgZnSm纳米相,在合金组织中还存在大量的α‑Mn纳米相,这些纳米相起到强化镁基体的作用,提高了合金的强度,且该纳米相尺寸细小,能够弥散分布在镁合金基体上,对基体的延伸率影响不大,能够实现镁合金的抗拉强度为400MPa~450MPa,屈服强度为390MPa~420MPa,延伸率为15%以上。
-
公开(公告)号:CN113774298A
公开(公告)日:2021-12-10
申请号:CN202111061721.X
申请日:2021-09-10
Applicant: 哈尔滨工程大学
Abstract: 一种脆性倾向稀土镁合金的强塑化加工方法,涉及一种镁合金的强塑化加工方法。为了解决现有脆性倾向稀土镁合金的强度和塑性差的问题,提供一种工艺设计合理、设备要求低、可产业化的一种具有脆性倾向的高强稀土镁合金的强塑化加工方法。本发明通过固溶、挤压、二次固溶、轧制和时效相结合制备出强度更高且塑性改善的稀土镁合金材料。使得实际生产中脆性倾向明显的镁合金得到更好可靠应用。本发明方法能在一定程度上提高合金塑性,进而用于一些实际生产中部分合金变脆的补救。本发明适用于脆性倾向稀土镁合金的强塑化加工。
-
公开(公告)号:CN110983136A
公开(公告)日:2020-04-10
申请号:CN201911402601.4
申请日:2019-12-31
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种高比强度镁锂合金及制备方法,(1)熔炼与制备:所述镁锂合金的成分及质量百分含量为:Zn:0-3%,Er:0-3%,Li:10-20%,其余为Mg以及不可去除的杂质元素;(2)挤压:用电火花线切割去除铸锭冒口,车削加工去除铸锭表面氧化皮,在80℃-120℃下进行挤压变形加工,挤压比不小于15,将铸锭挤压成2mm-4mm的板材;(3)轧制加工:打磨去除挤压后板材表面氧化皮,然后进行冷轧,将板材厚度轧制成0.5mm-1mm,得到一种高比强度镁锂合金;本发明利用低密度镁锂合金成形性好、可加工性高的特点,将合金特性与变形工艺相结合。
-
公开(公告)号:CN106498562B
公开(公告)日:2019-08-06
申请号:CN201610832347.1
申请日:2016-09-19
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种制备短碳纤维的方法。步骤一,将碳纤维放在马弗炉中450℃‑550℃环境下处理10‑20分钟;步骤二,用去离子水清洗碳纤维2‑3遍,烘干;步骤三,用球磨机球磨得到短切纤维;步骤四,用酒精和聚乙二醇对短切纤维进行分散。本发明通过用球磨机替代传统刀片类短切装置,调节相关参数,得到理想的短切纤维,有效降低了生产成本,同时避免因使用刀片类装置存在的安全隐患。可以很好地满足在一些生产中对短碳纤维的需求。
-
公开(公告)号:CN110064655A
公开(公告)日:2019-07-30
申请号:CN201910384357.7
申请日:2019-05-09
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种铝锂合金/TiC复合材料的轧制固态复合一体化方法,包括如下步骤:步骤一:将TiC颗粒均匀地撒在经表面处理后的铝锂合金板材上;步骤二:将撒满TiC颗粒的铝锂合金板材叠起来且两端固定;步骤三:将步骤二得到的板材预加热处理后下压轧制结合;步骤四:将步骤三轧制结合得的板材重复步骤一至三,得到多层铝锂合金/TiC复合材料。本发明固态复合一体化技术由于其制备速度快、无需任何气体保护气氛且只需传统的轧制即可实现制备陶瓷颗粒增强的金属基复合材料,具有重要的实用价值;TiC颗粒增强铝锂铜镁锆复合材料获得了优良的力学性能,尤其是界面结合强度。
-
公开(公告)号:CN104164602B
公开(公告)日:2016-03-09
申请号:CN201410384094.7
申请日:2014-08-06
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种医用可均匀降解镁合金的制备方法。按照原子比组成:Mg1-a-bREaZnb设计合金;将原料在720~750℃熔炼为熔液,通入氩气进行搅拌和精炼5~10分钟,然后在740℃静置15-25分钟,降温至700~710℃下进行浇注得到合金铸棒;将所得合金铸棒在500~530℃温度下进行保温处理8~12小时,冷却方式为空冷;将热处理后的合金铸棒在380~430℃的条件下进行热挤压,挤压杆速率为0.5~1mm/s,挤压比大于20;将热挤压后的合金在180~220℃进行10~100h的时效处理。本发明制得的可降解吸收的镁-稀土系合金,兼具优异力学性能、高耐腐蚀性能和均匀降解行为,适合作为人体可降解硬组织植入材料。
-
公开(公告)号:CN103290284B
公开(公告)日:2015-05-27
申请号:CN201310177285.1
申请日:2013-05-14
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种高强度镁锂合金及其制备方法。以商业纯Mg、商业纯Li、商业纯Zn、Mg-RY中间合金为原料,按照产品的质量百分含量为:Li:4.5~5.5%,RY:2.0~3.8%,Zn:0.2~1.0%,不可避免的Fe、Cu、Ni、Si杂质总量小于0.03%,余量为Mg的比例混合,在真空感应熔炼炉中进行熔炼,熔炼之前先将炉内抽至真空状态,再充入氩气进行保护,熔炼过程一直在氩气气氛的保护下进行,熔炼温度为660~750℃,熔炼后的熔体浇铸到金属模具中得到铸态合金;进行至少2道次热挤压得到高强度镁锂合金。本发明所得合金具有高的强度和良好的塑性,在室温下抗拉强度为220~260MPa,屈服强度为180~220MPa,延伸率为15%~25%。
-
公开(公告)号:CN103122431B
公开(公告)日:2015-04-08
申请号:CN201310064836.3
申请日:2013-03-01
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种长周期结构相增强的镁锂合金及其制备方法。以纯Mg、纯Li、纯Zn、Mg-Y中间合金为原料;按比例将原料放入真空感应熔炼炉中,充入保护气,然后加热熔炼,熔炼后的熔体浇铸到金属模具中得到铸态合金;温度为490-510℃下进行热处理5-10h,利用相转变获得具有LPSO结构相的铸造合金;在260-280℃下进行挤压变形加工所得到质量百分含量为:Li5.5-10%、Y4-10%、Zn1-4%,不可避免的Fe、Cu、Ni、Si杂质总量小于0.03%,余量为Mg,Y和Zn的质量含量比值为1-6的镁锂合金。本发明通过合理选择合金元素,将LPSO结构相引入到镁锂合金基体中,制备出具有低密度、高强度、高塑性和较好耐热性的镁锂合金材料。
-
公开(公告)号:CN103464765A
公开(公告)日:2013-12-25
申请号:CN201310414864.3
申请日:2013-09-12
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种Mg-Al-La/Al叠层复合材料及其制备方法。将Mg-Al-La合金和纯Al切成薄片;对Mg-Al-La薄片和Al薄片进行表面处理,去除表面油污和氧化物;将Mg-Al-La薄片和Al薄片,进行叠加形成叠层,所述叠层的中间为Mg-Al-La薄片、Mg-Al-La薄片的上下为Al薄片,然后放入真空热压烧结炉中采用梯度加热法进行复合得到Mg-Al-La/Al叠层复合材料。本发明的独特住处在于界面的优良结合方式,它是由机械结合、溶解和润湿结合、反应结合三种结合方式同时存在的一种混合结合形式。其中La和Al两种元素,在界面处反应形成Al4La,它像钉子一样将Mg-Al-La薄片与Al薄片连接在一起,使界面的结合更加牢固。此制备方法工艺简单,操作方便,利于大规模推广和应用。
-
-
-
-
-
-
-
-
-