-
公开(公告)号:CN104841452A
公开(公告)日:2015-08-19
申请号:CN201510129993.7
申请日:2015-03-23
Applicant: 同济大学
IPC: B01J23/89 , C02F1/70 , C02F101/36
Abstract: 本发明涉及修复地下水纳米Pd/Fe羟基氧化物复合材料制备方法,将天然火山岩矿物磨碎成粒径为1-3mm的颗粒;将亚铁盐加水搅拌溶解后加入火山岩颗粒,滴加Na2CO3水溶液控制体系的pH为7-8,然后在有氧条件下慢速搅拌20-30min;加入钯盐的水溶液,Pd/Fe摩尔比控制在0.1-0.3%,继续反应30-60min后静止沉淀,并于25℃下恒温老化24h,最后将混合体系固液分离,固体颗粒冷冻干燥24h后,即得到复合材料。与现有技术相比,本发明具有制备工艺简单等优点,制备得到的复合材料具有较高反应活性。
-
公开(公告)号:CN103224308B
公开(公告)日:2014-08-13
申请号:CN201210074135.3
申请日:2012-03-19
Applicant: 同济大学
Abstract: 本发明涉及亚铁还原与催化氧化协同强化废水生物处理工艺,适用于难降解工业废水的处理,包括制备结构态亚铁化合物、还原处理、催化氧化处理以及生化处理四个步骤。与现有技术相比,本发明在充分发挥亚铁还原功能的同时,再进一步利用亚铁还原产物的催化性能,投加少量的过氧化氢和强化材料,催化氧化去除部分难降解污染物,进一步提高废水可生化性,并耦合生物处理工艺,实现废水的彻底处理。具有适应水质范围广、经济高效、简单实用的特点。
-
公开(公告)号:CN103224308A
公开(公告)日:2013-07-31
申请号:CN201210074135.3
申请日:2012-03-19
Applicant: 同济大学
Abstract: 本发明涉及亚铁还原与催化氧化协同强化废水生物处理工艺,适用于难降解工业废水的处理,包括制备结构态亚铁化合物、还原处理、催化氧化处理以及生化处理四个步骤。与现有技术相比,本发明在充分发挥亚铁还原功能的同时,再进一步利用亚铁还原产物的催化性能,投加少量的过氧化氢和强化材料,催化氧化去除部分难降解污染物,进一步提高废水可生化性,并耦合生物处理工艺,实现废水的彻底处理。具有适应水质范围广、经济高效、简单实用的特点。
-
公开(公告)号:CN103224278A
公开(公告)日:2013-07-31
申请号:CN201210085903.5
申请日:2012-03-27
Applicant: 同济大学
IPC: C02F1/70 , B22F9/16 , C02F101/36 , C02F101/38 , C02F101/16
Abstract: 本发明涉及钯催化多羟基亚铁还原去除水中污染物的方法,通过在多羟基亚铁(FHC)体系中添加钯盐溶液,利用化学沉积的方式,形成Pd/FHC还原体系,提高FHC的还原性能,并投加亚硫酸钠和氯化钴溶液,既保持体系中亚铁的活性状态,又能发挥Pd与Co的协同催化作用,提高FHC还原转化污染物的能力。与现有技术相比,本发明有利于提高FHC的还原活性,并且制备的FHC体系颗粒均匀、稳定,有利于发挥FHC的还原性能,使其能还原转化更多的污染物,促进其在难降解废水处理中的应用。
-
公开(公告)号:CN102060334B
公开(公告)日:2013-06-26
申请号:CN201010553595.5
申请日:2010-11-22
Applicant: 同济大学
Abstract: 一种多羟基结构态亚铁化合物的制备及其在废水还原预处理中的应用。将一定量的亚铁盐溶解于不含溶解氧的水中;然后向上述溶液中逐渐滴加无氧碱性溶液,边滴加边搅拌,通过控制亚铁离子和氢氧根的摩尔比,即可生成结构态亚铁沉淀物(FHC)。本发明制备的FHC还原活性高,且与污染物反应速率快,能迅速还原转化废水中的毒害性污染物,溶解态亚铁转化为结构态羟基亚铁后能明显提高亚铁的还原性能。FHC用于废水还原预处理适应pH范围广,在pH为4~10的范围内都能取得良好的效果。另外FHC比催化铁填料投加方便,废水处理工艺运行管理维护简单,成本低廉,适用于大规模工业废水的还原预处理。
-
公开(公告)号:CN101693581B
公开(公告)日:2012-07-04
申请号:CN200910197532.8
申请日:2009-10-22
CPC classification number: Y02W10/15
Abstract: 本发明属于废水处理技术领域,具体涉及一种水解-催化铁-好氧耦合处理有毒有害难降解废水方法。步骤为:经初步处理的废水直接进入上流式水解系统1,停留时间为4.0小时-10.0小时,出水进入催化铁内电解池,催化铁内电解池内的铁刨花和铜刨花的质量比为1∶1-20∶1,堆积比重为0.1-0.3,填料区接触时间为0.5-2.0h,出水回流至上流式水解系统的回流比为20%-100%;出水进入好氧生物处理系统,水力停留时间为6.0-12.0h,出水进入固液分离系统,污泥的回流比为10%-50%,固液分离系统出水回流至催化铁内电解池的回流比为20%-200%。本发明在充分发挥不同处理单元的能力,保持其处理效果和各自的优点的前提下,实现了三者不同的耦合协同作用。提高了系统对水质和水量负荷的冲击,减少了废水的一些预处理,有效提高氨氮的去除率,调节灵活。
-
公开(公告)号:CN101348314B
公开(公告)日:2010-07-28
申请号:CN200810196051.0
申请日:2008-09-12
Abstract: 本发明属于废水处理技术,涉及一种用于难降解工业废水预处理的催化铁还原与厌氧水解酸化协同预处理工业废水的方法。该方法包括以下步骤:第一步:制备催化铁滤料,并压制成单元化催化铁滤料;第二步:设置常规的厌氧水解酸化反应池;第三步:将安置了催化铁滤料放置于厌氧水解酸化反应池中;第四步:向厌氧水解酸化反应池中通入污水,使污水流经催化铁滤料后出水,水力停留时间为3~8h,进行厌氧水解酸化反应。本发明既能将毒害污染物的毒性官能团脱除,减少了毒性污染物对厌氧微生物的毒害作用,又能够将难生物降解污染物水解为易生物降解的小分子物质,从而可提高废水的综合可生物降解性能,并且处理效率高、处理效果好。
-
公开(公告)号:CN101745197A
公开(公告)日:2010-06-23
申请号:CN200910197385.4
申请日:2009-10-20
Applicant: 同济大学
IPC: A62D3/38 , C02F1/72 , B09B3/00 , B01J23/889 , B01J37/00 , C02F101/30 , A62D101/20
Abstract: 一种处理难降解污染物的方法,利用黄铁矿烧渣作为催化剂,与H2O2构成非均相类Fenton体系,催化H2O2产生氧化性极强的羟基自由基·OH,对有机污染物进行高效、快速降解。包括:(1)将废水加入反应器后,在废水中加入一定量的黄铁矿烧渣原样或者经过活化预处理后的烧渣;(2)在废水与黄铁矿烧渣混合液中加入H2O2溶液,以使其与黄铁矿烧渣形成类Fenton试剂;(3)搅拌,使黄铁矿烧渣及H2O2溶液与废水混合,进行反应,到达设定的反应时间后停止搅拌;(4)静置,黄铁矿烧渣迅速沉淀,排出上清液,黄铁矿烧渣可以重复使用。本发明发现了一种新型类Fenton氧化催化剂,扩展了黄铁矿烧渣资源利用的途径,达到以废治废的目的,实现了废物综合利用。
-
公开(公告)号:CN101676230A
公开(公告)日:2010-03-24
申请号:CN200810200108.X
申请日:2008-09-19
Abstract: 一种用于难降解工业废水处理的催化铁内电解与悬浮填料生物膜一体化处理工业废水的方法,包括以下步骤:第一步,制备催化铁内电解滤料;第二步,设置常规的生物反应池,生物反应池内投加悬浮填料;第三步,将催化铁内电解滤料放置于生物反应池内曝气系统的上方的适当位置,催化铁内电解滤料装置在水流垂直方向放置;第四步,污水进入上述放置了催化铁内电解滤料和悬浮填料的生物反应池内处理;第五步,将来自于生物反应池的混合液进入二沉池进行泥水分离分别排放。本发明能够将催化铁内电解技术与生物法有机耦合处理难生物降解工业废水、可减少毒性污染物对微生物的毒害作用、提高废水的可生化性、增强生化处理效果。
-
公开(公告)号:CN118831292A
公开(公告)日:2024-10-25
申请号:CN202410968713.0
申请日:2024-07-19
Applicant: 同济大学
IPC: A62D3/02 , A62D101/28 , A62D101/26
Abstract: 本发明涉及污染控制技术领域,尤其是涉及一种降低磺胺类污染物生物毒性的方法。本发明首先将磺胺类污染物溶解后与酚类混匀,得到混合物;然后在混合物中添加漆酶,通过聚合反应实现磺胺类污染物毒性的降低。本发明提供了一种通过聚合转化实现污染物脱毒的新方法,而非传统矿化降解为CO2的思路,不仅解决了污染物的毒性问题,而且减少了碳排放,是当前绿色低碳处理技术要求的一种重要创新。
-
-
-
-
-
-
-
-
-