一种基于无线传感器执行网络的设施作物生长参数监测和控制方法

    公开(公告)号:CN103228021B

    公开(公告)日:2016-06-15

    申请号:CN201310000985.3

    申请日:2013-01-05

    CPC classification number: Y02D70/32

    Abstract: 一种基于无线传感器执行器网络的设施作物生长环境参数监测和控制方法,其特征是包括三个阶段:分簇形成阶段、簇内更新阶段、簇头重新选举阶段。该方法将WSAN技术应用于设施作物,并提出一种适合WSAN网络的协作路由协议——基于动态分簇的角度转发路由协议,同时提出一种基于密封第一价拍卖的实时任务分配算法RTAA-SFPA。本发明可以实现设施作物应用的自动化、网络化和智能化;可以实现设施作物管理的实时性、可靠性和低能耗。

    一种基于Unet与多尺度特征融合的水下图像增强方法

    公开(公告)号:CN118761923A

    公开(公告)日:2024-10-11

    申请号:CN202410853792.0

    申请日:2024-06-28

    Abstract: 本发明公开了一种基于Unet与多尺度特征融合的水下图像增强方法,首先对水下失真原图像进行预处理;然后将预处理后的图像分别与原始图像两两结合,再通过图像增强网络进行深层次增强,并对原图像进行深层次增强;利用置信度生成网络生成相应的置信度值,并使用置信度值动态调整不同增强结果对最终图像的贡献比例,实现多尺度特征融合;最后使用拉普拉斯边缘检测对融合后的图像进行边缘增强,提高图像细节的清晰度和对比度。本发明确保了增强效果的全面优化,能够显著提升水下图像的亮度、色彩、纹理和结构等方面的质量,适用于多种水下环境中的高质量图像需求;具有高效、鲁棒的图像增强能力,为水下科学研究和工程应用提供了重要支持。

    一种基于注意力机制与多尺度特征融合的植物图像分割方法

    公开(公告)号:CN115205647A

    公开(公告)日:2022-10-18

    申请号:CN202210859319.4

    申请日:2022-07-21

    Abstract: 本发明公开了一种基于注意力机制与多尺度特征融合的植物图像分割方法,包括划分训练集、验证集和测试集,并进行数据处理;提取多尺度特征,包括深层特征和浅层特征;调整深层特征的通道权重,并对深层特征图进行上采样处理,得到上采样引导后的深层特征图;调整浅层特征的空间分布权重,得到调整空间分布权重后的浅层特征图;将上采样引导后的深层特征图和调整空间分布权重后的浅层特征图进行多尺度融合,得到多尺度融合后的特征图;模型训练,得到训练好的植物图像分割模型;最后对模型进行验证和测试。本发明能够较好的解决复杂背景下植物图像分割识别问题,具有较强的鲁棒性和较高的准确率,可为植物表型提取,长势预测提供视觉支持。

    一种反卷积引导的半监督植物叶部病害识别与分割方法

    公开(公告)号:CN112036335A

    公开(公告)日:2020-12-04

    申请号:CN202010915753.0

    申请日:2020-09-03

    Abstract: 本发明提出一种反卷积引导的半监督植物叶部病害识别与分割方法,使用少量病害类别标注和病斑的像素级标注,通过反卷积实现病害种类的识别和病斑区域的分割。本方法通过一致性正则化、熵最小化方法生成无标记样本的类别预测标签;将有标记样本和无标记样本进行图像混合,利用新生成的图像进行半监督病害分类;对类别信息进行上采样,利用少量像素级标记进行半监督病斑分割。在模型训练的过程中,使用指数加权平均更新模型参数,使模型在测试数据上更加鲁棒。本发明适用于标签样本数量不足的植物叶部病害识别与分割的情况,实现了识别与分割的一体化,模型在光线不足、有异物遮挡叶片图像中具有较强的泛化能力,识别和分割速度能够满足实时性要求。

    一种基于BERT的水稻表型组学知识图谱关系提取方法及系统

    公开(公告)号:CN111968700A

    公开(公告)日:2020-11-20

    申请号:CN202010644955.6

    申请日:2020-07-07

    Abstract: 本发明公开了一种基于BERT的水稻表型组学知识图谱关系提取方法及系统,包括如下步骤:首先,使用植物本体论对于水稻表型组学数据进行关系分类,获得关系数据集;其次,将关系数据集转化为词向量、位置向量以及句子向量表示,输入BERT模型进行训练与测试,生成关系抽取模型;最后,将需要抽取的水稻表型组学文本与实体输入关系抽取模型,返回相应的关系,本发明构建了水稻表型组学专用数据集,使用多种向量表示作为输入,能够更好对句子内部以及句间关系特征进行提取,提升水稻表型组学知识图谱关系提取的效率和性能。

Patent Agency Ranking