端口耦合结构、滤波器及射频组件

    公开(公告)号:CN110676542A

    公开(公告)日:2020-01-10

    申请号:CN201910839009.4

    申请日:2019-09-05

    Abstract: 本发明提供一种端口耦合结构、滤波器及射频组件,其中,所述端口耦合结构设于介质波导谐振器的介质块上,介质块的顶面、底面及侧面均设有第一导电层,介质块的顶面设有频率调节结构,频率调节结构包括由顶面朝向其内部延伸的频率调节孔及设于频率调节孔孔壁上的第二导电层,端口耦合结构包括设于侧面并由侧面朝向介质块内部延伸至与频率调节孔贯通的时延调节孔、设于时延调节孔孔壁上的第三导电层及将第一导电层和第三导电层隔开的隔离带,第三导电层与第二导电层相连。通过使时延调节孔与频率调节孔连通,且时延调节孔和频率调节孔中的导电层连接,使得射频连接器与频率调节孔为感性连接,从而实现较宽的耦合带宽。

    载波信号抑制方法及载波信号抑制器

    公开(公告)号:CN101001461B

    公开(公告)日:2010-09-15

    申请号:CN200610124396.6

    申请日:2006-12-25

    CPC classification number: Y02D70/122 Y02D70/34

    Abstract: 本发明公开一种载波信号抑制方法,包括如下步骤:首先,产生与存在于本小区的干扰信号同频的干扰抑制信号,向空中发射;其次,移动台开机搜索广播信道,搜索到最高功率的信号,尝试读取其频率校正信道,若读取失败,移动台继而重新搜索与干扰抑制信号不同频率的次功率信号,即可获得本小区内的正常覆盖信号。此外,还公开了一种载波信号抑制器,包括:信号发生器,用于产生与干扰信号同频的干扰抑制信号;功率放大器,用于放大干扰抑制信号;天线单元,用于发射干扰抑制信号。与传统技术相比,本发明能有效地抑制邻近小区信号对本小区信号的干扰,消除误漫游的情况,使边缘小区的通信更加高效,改善网络运营情况。

    通信装置、介质波导滤波器及容性耦合带宽的调试方法

    公开(公告)号:CN112635939B

    公开(公告)日:2024-03-26

    申请号:CN202011584338.8

    申请日:2020-12-28

    Abstract: 本发明涉及一种通信装置、介质波导滤波器及容性耦合带宽的调试方法,介质波导滤波器包括介质本体、金属层及金属填充层。其中,介质本体包括两个相邻的介质谐振器、及设置于两个相邻的介质谐振器之间的通孔。金属层覆盖于介质谐振器的表面及通孔的内壁,且金属层还设有环绕通孔的周向设置的隔断槽。金属填充层设置于隔断槽内,金属填充层与金属层间隔设置,且金属填充层的外边缘对应设有一个封闭的环形槽。可以将隔断槽的宽度设计或加工的较宽,再通过调节隔断槽内金属填充层的面积的大小,从而实现容性耦合带宽的调节以满足实际的预设要求,简单、方便,便于加工,降低了设计和加工难度,也使得容性耦合带宽的调试更加灵活。

    介质波导滤波器的容性耦合结构及介质波导滤波器

    公开(公告)号:CN110148819B

    公开(公告)日:2024-03-26

    申请号:CN201910535591.5

    申请日:2019-06-20

    Abstract: 本发明公开了一种介质波导滤波器的容性耦合结构及介质波导滤波器,容性耦合结构包括设于介质本体中相邻的两个介质谐振器之间的通孔及分别绕所述通孔的周向设置的第一调节槽和第二调节槽,所述第一调节槽设置为非封闭形式,所述第二调节槽设置为封闭形式,所述第一调节槽及所述第二调节槽均贯穿所述介质本体的导电层,所述第一调节槽所在的第一平面与所述第二调节槽所在的第二平面相对间隔设置,且所述第一平面与所述第二平面之间的间距小于所述介质本体的厚度。所述容性耦合结构便于加工,生产调试难度低,能够保证生产质量;如此,采用所述容性耦合结构的介质波导滤波器的生产调试难度低,生产质量高,适应大批量生产。

    滤波器及其介质谐振器
    50.
    发明授权

    公开(公告)号:CN111342187B

    公开(公告)日:2021-11-02

    申请号:CN202010161408.2

    申请日:2020-03-10

    Abstract: 本发明涉及一种滤波器及其介质谐振器,介质谐振器包括介质块及包覆于介质块外表面的金属层。介质谐振器具有相对设置的第一表面及第二表面,第一表面形成有供射频连接器的PIN针插入的金属化盲孔,第一表面还形成有异于金属化盲孔的内凹结构。通过在介质谐振器的第一表面形成内凹结构,可以起到增强射频连接器与介质谐振器之间的耦合的作用,从而实现输入输出端的带宽调节,改变时延。当内凹结构的尺寸增大时,相应的输入输出端的时延增长。因此,可在加大金属化盲孔深度的同时,通过调节内凹结构的尺寸,以使时延满足需求。而随着金属化盲孔的深度增大,PIN针插入的长度也变长,故PIN针焊接的强度更高,上述滤波器的可靠性得到显著提升。

Patent Agency Ranking