纳米SnO2种子嵌入涂层钛阳极及其制备方法

    公开(公告)号:CN101372751A

    公开(公告)日:2009-02-25

    申请号:CN200810071889.7

    申请日:2008-10-07

    Applicant: 福州大学

    Abstract: 本发明提供一种纳米SnO2种子嵌入涂层钛阳极及其制备方法,该钛阳极表面沉积活性涂层,钛阳极的活性涂层是添加纳米SnO2种子的氧化物涂层;制备方法为:钛基处理,种子选择,含纳米SnO2种子的活性涂液的配制,涂层沉积于钛基材:采用常规的沉积法;涂层后续热处理,采用常规的热处理。本发明使钛阳极涂层的活性面积显著提高,而且制备方法简单,可操作性强,原料易得,成本低。

    一种高性能高熵合金-陶瓷复合纳米结构阳极材料及其在固体氧化物燃料电池中的应用

    公开(公告)号:CN118919738A

    公开(公告)日:2024-11-08

    申请号:CN202411124618.9

    申请日:2024-08-16

    Applicant: 福州大学

    Abstract: 本发明公开了一种高熵合金‑陶瓷复合纳米结构阳极材料,高熵合金为Fe、Ni、Co、Cu、Mo五种金属元素等摩尔比例形成的合金,混合离子电子导体陶瓷材料为10‑20 mol%镧系金属氧化物氧化钆掺杂的氧化铈。具有优异催化性能和组分灵活可变的高熵合金与混合离子电子导体陶瓷材料在溶液中自发有序地进行复合,通过调控两者比例使复合粉体颗粒细化且呈现出均匀分布的纳米结构,并采用无需烧结步骤的电极制备工艺将其直接应用于固体氧化物燃料电池,相比纯高熵合金电极及烧结电极,显著提高了电池的性能和运行稳定性,且整个制备过程原料成本低廉,制备方法操作简单,为高熵合金在固体氧化物燃料电池方面提供了良好的应用前景。

    一种自组装氨分解纳米结构阳极材料及其在直接氨固体氧化物燃料电池中的应用

    公开(公告)号:CN116936833A

    公开(公告)日:2023-10-24

    申请号:CN202310977284.9

    申请日:2023-08-04

    Applicant: 福州大学

    Abstract: 本发明公开了一种自组装氨分解纳米结构阳极材料及其在直接氨固体氧化物燃料电池中的应用,该阳极材料为活性金属组分和镧系金属氧化物的复合物;所述的活性金属组分是过渡金属铁或镍铁双金属,所述的镧系金属氧化物组分为氧化钆掺杂的氧化铈。本发明通过自组装的方法获得纳米复合结构的固体氧化物燃料电池阳极材料。本发明原料成本低廉,制作方法简单,制备的催化剂材料可以达到纳米尺寸,各相之间分布更为均匀,自组装合成方法加强了金属间、金属‑氧化物间的相互作用,有效提高了直接氨固体氧化物电池的性能和运行的长期稳定性,同时该材料还可以作为氨分解制氢的催化剂,具有良好的应用前景。

    一种耐铬中毒的固体氧化物燃料电池纳米结构复合阴极

    公开(公告)号:CN113871636B

    公开(公告)日:2023-09-29

    申请号:CN202111159749.7

    申请日:2021-09-30

    Applicant: 福州大学

    Abstract: 本发明公开了一种耐铬中毒的固体氧化物燃料电池纳米结构复合阴极的制备方法,将Ba(NO3)2、Ce(NO3)3·6H2O、Gd(NO3)3·6H2O、分散剂与去离子水混合均匀得到前驱体溶液,加入到(La0.8Sr0.2)0.95MnO3+δ阴极上,经干燥、煅烧,得到纳米结构的复合阴极。本发明原料易得,工艺简单、稳定,制备成本低,纳米结构增加阴极的表面反应区,提高电化学催化活性,使电池表现出高性能和铬耐受性。

    一种固体氧化物燃料电池自组装高性能核壳结构阴极及其制备方法

    公开(公告)号:CN112687892B

    公开(公告)日:2021-11-30

    申请号:CN202110084424.0

    申请日:2021-01-21

    Applicant: 福州大学

    Abstract: 本发明公开了一种固体氧化物燃料电池自组装高性能Pt@La2NiO4+δ核壳结构阴极及其制备方法,具体包括以下步骤:(1)将La2NiO4+δ阴极浆料涂覆在电解质上,并在一定温度下烧结一定时间,(2)对烧结好的阴极表面涂覆上一定厚度Pt电极浆料,在一定温度下烘干一段时间;(3)将阴极在一定温度、一定气氛下施加电流,进行一定时间的电化学极化,即可制备出高性能Pt@La2NiO4+δ核壳结构的阴极。通过电化学极化使La2NiO4+δ阴极材料表面形成一层Pt外壳,有效的提高了阴极材料的催化活性。本发明具体条件温和可控,固体氧化物燃料电池输出性能显著提高,在燃料电池高性能电极制备领域有广泛的应用前景。

    一种封接微晶玻璃及其制备和使用方法

    公开(公告)号:CN103288349B

    公开(公告)日:2015-10-14

    申请号:CN201310200396.X

    申请日:2013-05-27

    Applicant: 福州大学

    Abstract: 本发明公开了一种封接微晶玻璃及其制备和使用方法,原料组成为B2O3、Al2O3、SiO2、MO(MgO、CaO、SrO、BaO中的一种或几种的混合物)和NiO,其摩尔比为0~10:0~5:25~60:20~50:5~30。由于加入了NiO促进微晶玻璃的形成,有效减少含Cr不锈钢合金连接极中Cr离子向封接玻璃的扩散,显著提高封接微晶玻璃的高温化学稳定性;另外,NiO显著降低玻璃的封装温度,避免过高温度对其他元件的破坏。本发明制备原料简单,易得,工艺稳定,获得以SiO2为主体的逆性玻璃网络结构,成本低,工艺简单、可行,达到了实用化和工业化的条件。

Patent Agency Ranking