光谱稳定性优化装置、系统和方法

    公开(公告)号:CN107860713B

    公开(公告)日:2020-12-15

    申请号:CN201711079175.6

    申请日:2017-11-06

    Abstract: 本发明实施例提供一种光谱稳定性优化装置、系统和方法,该光谱稳定性优化装置应用于包括激光器和载物台的LIBS系统中,所述光谱稳定性优化装置包括光束整形器;所述光束整形器设置于所述激光器与所述载物台之间,且所述光束整形器与所述载物台和所述激光器共线;其中,所述光束整形器用于对由所述激光器发射的高斯光束进行整形,并使得整形后形成的均匀平顶光束入射至所述载物台上的样品靶材。本发明通过对光谱稳定性优化装置和系统的巧妙设计,能够通过调节光束整形器的状态获得稳定的等离子体,且本发明实现简单,操作方便。

    一种基于多PIT效应的四通道光学滤波器

    公开(公告)号:CN109683224B

    公开(公告)日:2020-12-01

    申请号:CN201910085688.0

    申请日:2019-01-29

    Abstract: 本发明公开了一种基于多PIT效应的四通道光学滤波器,包括二氧化硅衬底、金属层、石墨烯层、两个第一谐振腔、第二谐振腔、第三谐振腔、第四谐振腔和第五谐振腔,所述二氧化硅衬底水平设置,所述金属层水平设置在所述二氧化硅衬底的上端,所述金属层上端设有沿前后方向延伸的条形波导,所述波导的两端分别水平延伸至所述金属层的前后两端,两个所述第一谐振腔分别沿前后方向间隔设置在所述金属层的上端,并分别位于所述波导的左右两侧,两个所述第一谐振腔均与所述波导连通,所述石墨烯层设置在两个所述第一谐振腔之间,并填充在所述波导内。本发明所述的光学滤波器,具有功耗低和尺寸小的优点。

    一种基于纳米条波导耦合谐振腔的石墨烯逻辑异或门器件

    公开(公告)号:CN111999961A

    公开(公告)日:2020-11-27

    申请号:CN202010802121.3

    申请日:2020-08-11

    Abstract: 本发明涉及一种基于纳米条波导耦合谐振腔的石墨烯逻辑异或门器件,包括硅衬底、蓝宝石层、第一石墨烯纳米条波导以及第二石墨烯纳米条波导、与第一石墨烯纳米条波导以及第二石墨烯纳米条波导耦合的第一石墨烯谐振腔、与第一石墨烯纳米条波导以及第二石墨烯纳米条波导耦合的第二石墨烯谐振腔,第一石墨烯纳米条波导以及第二石墨烯纳米条波导沿同一直线设置,第一石墨烯谐振腔以及第二石墨烯谐振腔分别位于直线两侧,第一石墨烯纳米条波导和第二石墨烯纳米条波导相邻边之间的距离d1、第一石墨烯纳米条波导与第一石墨烯谐振腔的耦合长度d2满足:d1+d2=mπ/(k1-k2)。具有超快响应速率、超紧凑、高消光比和高对比度的特点。

    一种基于PIT效应的全光开关

    公开(公告)号:CN109752800B

    公开(公告)日:2020-07-10

    申请号:CN201910085690.8

    申请日:2019-01-29

    Abstract: 本发明公开了一种基于PIT效应的全光开关,包括二氧化硅衬底、金属层、石墨烯层、第一谐振腔和第二谐振腔,所述二氧化硅衬底水平设置,所述金属层水平设置在所述二氧化硅衬底的上端,其上端设有沿前后方向延伸的条形波导,所述波导的两端分别水平延伸至所述金属层的前后两端,所述第一谐振腔和所述第二谐振腔分别沿前后方向间隔设置在所述金属层的上端,并分别位于所述波导的左右两侧,且所述第一谐振腔和所述第二谐振腔均与所述波导连通,所述石墨烯层设置在所述第一谐振腔和所述第二谐振腔之间,并填充在所述波导内,所述波导内填充有空气。本发明公开的一种基于PIT效应的全光开关,具有尺寸小,功耗低和响应速度快的优点。

    一种基于PIT效应的石墨烯折射率传感器

    公开(公告)号:CN110376162A

    公开(公告)日:2019-10-25

    申请号:CN201910639523.3

    申请日:2019-07-16

    Abstract: 本发明提供了一种基于PIT效应的石墨烯折射率传感器,包括硅衬底以及设置于硅衬底上的蓝宝石层,蓝宝石层表面上设置有可容纳待测样品的样品区,样品区内设置有石墨烯纳米条波导、可与石墨烯纳米条波导直接耦合的第一石墨烯谐振腔以及可通过第一石墨烯谐振腔与石墨烯纳米条波导间接耦合的第二石墨烯谐振腔。基于本发明的石墨烯折射率传感器尺寸小、灵敏度高、检测范围宽,在生物大分子及化学物质的探测中具有很好的应用前景。

    一种基于PIT效应的全光开关

    公开(公告)号:CN109752800A

    公开(公告)日:2019-05-14

    申请号:CN201910085690.8

    申请日:2019-01-29

    Abstract: 本发明公开了一种基于PIT效应的全光开关,包括二氧化硅衬底、金属层、石墨烯层、第一谐振腔和第二谐振腔,所述二氧化硅衬底水平设置,所述金属层水平设置在所述二氧化硅衬底的上端,其上端设有沿前后方向延伸的条形波导,所述波导的两端分别水平延伸至所述金属层的前后两端,所述第一谐振腔和所述第二谐振腔分别沿前后方向间隔设置在所述金属层的上端,并分别位于所述波导的左右两侧,且所述第一谐振腔和所述第二谐振腔均与所述波导连通,所述石墨烯层设置在所述第一谐振腔和所述第二谐振腔之间,并填充在所述波导内,所述波导内填充有空气。本发明公开的一种基于PIT效应的全光开关,具有尺寸小,功耗低和响应速度快的优点。

    一种基于多谱线加权的元素测量方法及装置

    公开(公告)号:CN107132214B

    公开(公告)日:2018-03-27

    申请号:CN201710548914.5

    申请日:2017-07-06

    Abstract: 本发明实施例提供一种基于多谱线加权的元素测量方法及装置,属于光谱分析领域。该方法首先获取定标样品集中每个样品的待测元素浓度和待测元素的至少两条目标谱线及其对应的内标谱线的强度。将目标谱线与内标谱线的强度比值作为该目标谱线的相对谱线强度,然后根据预设的权重系数组和每条目标谱线的相对谱线强度计算待测元素的加权相对谱线强度,再根据每个样品中待测元素的浓度和计算得到的加权相对谱线强度进行线性拟合,确定用于对该待测元素测量的定标曲线。这种采用多条谱线进行加权处理的定标方法,避免了单条谱线在定量分析中,因等离子体的波动或外界干扰引起的谱线波动,而造成的分析不准确,有效的提高了系统的分析准确度和稳定性。

    一种原油脱水处理装置
    38.
    发明公开

    公开(公告)号:CN107158808A

    公开(公告)日:2017-09-15

    申请号:CN201710469668.4

    申请日:2017-06-20

    CPC classification number: B01D45/08 B01D17/0211

    Abstract: 本发明公开了一种原油脱水处理装置,属于原油处理技术领域。该装置包括压力容器、气液聚结分离装置、油水聚结分离装置、管式油水界面调节装置、气体排出装置和液相出口,其中,在压力容器内部形成预分离腔、气液分离腔和油水分离腔,使得气液混合物中的气相经过四级分离处理,液相经过三级分离处理,且管式油水界面调节装置可以灵活的调节油水界面,保证了经处理后的气体和原油均满足相关的排放标准。本发明的处理装置结构简单,操作方便,便于后期的维护管理。

    采用二次回流冷却模式的微通道热沉

    公开(公告)号:CN106601703A

    公开(公告)日:2017-04-26

    申请号:CN201610956641.3

    申请日:2016-10-27

    CPC classification number: H01L23/367 H01L23/46

    Abstract: 本发明公开了一种采用二次回流冷却模式的微通道热沉,属于应用功率开关器件冷却的热沉设备领域。微通道热沉包括热沉壳体与置于热沉壳体上端的密封板,热沉壳体包括底板与侧壁围合形成的上端开口的立方体,侧壁包含第一侧壁、第二侧壁、第三侧壁与第四侧壁,以第一侧壁与第三侧壁所在方向为列,第二侧壁与第四侧壁所在方向为行,底板上布置有呈矩阵排布的微通道单元,微通道单元包含靠近第一侧壁布置的第一微通道单元、靠近第三侧壁布置的第二微通道单元,在第一微通道单元与第二微通道单元之间均匀布置有若干列第三微通道单元,每相邻两列第三微通道单元为结构相同,布置方向相反的正三棱柱。本发明的微通道热沉能保证工质流体经过内部微通道时,容易形成二次流,提高了散热效率。

    一种形貌可控的铜纳米结构材料的制备方法

    公开(公告)号:CN105177696A

    公开(公告)日:2015-12-23

    申请号:CN201510531006.6

    申请日:2015-08-26

    Abstract: 本发明涉及一种铜纳米结构的醇热法可控制备方法。本发明是通过压力容器(如高压釜)的高温高压环境中给零价态的金属铜提供能量,控制醇溶液的温度和保持时间,很方便的得到所需要形貌的铜纳米结构。方法是将无水乙醇溶液和清洗干净的纯金属铜片置入高压釜中,铜片全部浸没在该无水乙醇溶液中。将高压釜保持在100-200℃反应0.5-6小时或以上,一定的温度保持不同时间可得到纳米片,纳米线和纳米颗粒结构。通过简单的醇热制备方法得到的铜纳米结构在微电子集成电路、催化、抗菌领域具有低成本应用前景。

Patent Agency Ranking