-
公开(公告)号:CN116459857B
公开(公告)日:2024-04-19
申请号:CN202310445038.9
申请日:2023-04-24
Applicant: 安徽大学
IPC: B01J27/24 , C07C209/36 , C07C211/52
Abstract: 本发明涉及一种高选择性催化剂Co/NS800及其制备方法和在非均相体系中选择性加氢对氯硝基苯的方法,属于催化加氢领域。该催化剂以四水合乙酸钴为钴源,N,S共掺杂的碳为载体,采用浸渍法在N,S共掺杂的碳上负载活性金属,放在管式炉中氢气还原,得到催化剂Co/NS800,然后分散在溶剂中,以氢气为氢源,催化对氯硝基苯选择性加氢。其中负载量为5%的Co/NS800催化剂具有较好的催化性能,在氢气压力3MPa、温度80℃、反应12h时,对氯硝基苯的转化率达到100%,选择性达到了99.9%以上。该制备方法成本低廉、催化加氢转化率高,目标产物选择性高,且易于分离具有产业化前景。
-
公开(公告)号:CN115254167B
公开(公告)日:2024-01-09
申请号:CN202210947659.2
申请日:2022-08-09
Applicant: 安徽大学
IPC: B01J27/24 , B01J35/61 , B01J35/64 , C07C209/36 , C07C211/52
Abstract: 本发明涉及一种N,S共掺杂介孔碳负载Co催化剂的制备方法及其在加氢中的应用,属于催化剂制备技术领域,该催化剂命名为Co/NSPC,用于催化对氯硝基苯转化为对氯苯胺,其制备方法如下:以四水合乙酸钴为钴源,2‑氨基噻唑为碳源、氮源和硫源,ZnCl2为溶剂和催化剂,放在管式炉中一步法得到该催化剂,其中Co/NSPC‑800催化剂比表面积达到1618m2g‑1,平均孔径为2.6nm,该催化剂在标准条件下转化率达到15.5%,对氯苯胺的选择性达到99%以上。该制备方法简单,生产成本低廉,收率较高,催化加氢选择性高,且可以循环使用四次,具有广泛的产业化前景。
-
公开(公告)号:CN117085686A
公开(公告)日:2023-11-21
申请号:CN202310933594.0
申请日:2023-07-27
Applicant: 安徽大学
IPC: B01J23/78 , C10G2/00 , B01J23/745 , B01J35/10
Abstract: 本发明开发了一种利用活化后的煤焦炭作为载体,将铁负载在上面,通过引入电子型助剂,用来二氧化碳加氢高效生成液体燃料的催化剂制备方法。本发明设计的活化煤焦炭负载的铁基催化剂,通过化学活化的方法有效的提高了煤焦炭载体的比表面积并明显降低了煤焦炭中的硫含量,从而显著的提升了催化剂的反应活性,有效的提高了产品中高碳烃的产率。本发明通过设计化学活化改性的煤焦炭负载型铁基催化剂,改善了催化剂表面的理化微环境特性以及催化性能,为二氧化碳选择性加氢制取高附加值化学品的高效转化过程提供新的思路。
-
公开(公告)号:CN116721871A
公开(公告)日:2023-09-08
申请号:CN202310825840.0
申请日:2023-07-07
Applicant: 安徽大学
Abstract: 本发明涉及电解液技术领域,公开了一种高电导高水系宽温铝电解电容器用电解液及其制备方法,按质量百分比计,包括主溶质5‑20%、辅助溶质0.5‑5%、溶剂50‑90%以及添加剂0.5‑10%。本发明制得的电解液电导率高达38ms/cm,含水量不低于40%,闪火电压可达到210V。本发明的电解液通过原料间的配合作用,可以有效降低电解液的蒸汽压,抑制气体产生从而降低电容器内压,提高电解液高温性能。本发明的电解液高温性能稳定,使用温度范围宽,氧化效率高,其组装而成的铝电解电容器在‑40℃~+105℃环境下可靠性持续工作3000h以上。
-
公开(公告)号:CN109111495B
公开(公告)日:2021-02-09
申请号:CN201810410829.7
申请日:2018-05-02
Applicant: 安徽大学
IPC: C07J63/00 , C07H15/256 , C07H1/06
Abstract: 本发明公开了一种降低甘草酸单铵盐中相关物质含量的方法,经过多次小试和中试实验,我们可将最大杂控制在4.2%左右,同时将次大杂控制在3.0%以内,总杂质含量低于8%。经过一次纯化,甘草酸单铵盐纯度由73.0%提高到80%以上(HPLC法),得率大于60%。与国内十一家公司提供的技术参数进行统计,目前经纯化后的样品,其最大杂含量、次大杂含量和总杂质含量均具有明显的优势。本发明工艺简单,步骤少,对设备要求低,具有较高的适用性和大规模用于工业生产的前景,显著的降低了甘草酸单铵盐精品中相关物质的含量。
-
公开(公告)号:CN112142154A
公开(公告)日:2020-12-29
申请号:CN201910573740.7
申请日:2019-06-28
Applicant: 安徽大学
IPC: C02F1/28 , B01J20/02 , B01J20/30 , C02F101/20 , C02F101/30
Abstract: 本发明公开了一种利用硒化钴吸附重金属铅离子和刚果红染料的方法,属于污水中重金属离子和有机染料吸附处理技术领域。将合成的硒化钴用于吸附重金属铅离子和刚果红染料,实验发现硒化钴具有高效吸附重金属铅离子和刚果红染料的作用,将适量硒化钴加入不同浓度的铅离子溶液和不同浓度的刚果红溶液中,搅拌一段时间后测试吸附容量。根据测试结果,硒化钴对铅离子的最大吸附量可达1021 mg/g,对溶液中刚果红染料的最大吸附量达1563 mg/g。而同样条件下,活性炭对溶液中铅离子和刚果红的吸附量仅分别为22 mg/g和320 mg/g。因此利用硒化钴作为吸附剂,可以高效吸附污水中的重金属铅离子和刚果红染料。本发明制备的硒化钴物相纯,比表面积大,吸附效率高,可重复利用。本实验过程简单、操作容易、无需使用有机模版,易于工业化生产。
-
公开(公告)号:CN112142117A
公开(公告)日:2020-12-29
申请号:CN201910574366.2
申请日:2019-06-28
Applicant: 安徽大学
Abstract: 本发明公开了一种多孔CoSn(OH)6纳米立方体的制备方法,采用一步水热法制备尺寸较小、多孔的CoSn(OH)6纳米立方体,该材料具有独特的形貌、大量的纳米孔隙,高的比表面积,良好的电化学性质,本发明属于材料制备及应用技术领域,采用水热法,以一定比率的钴源和锡源为反应物,以一定浓度的氢氧化钠溶液调节溶液pH,以适量的二水合柠檬酸三钠作为形貌调节剂,以去离子水为溶剂,在一定反应温度下,制得颗粒尺寸小于130纳米的多孔CoSn(OH)6纳米立方体,该纳米材料具有较多的活性位点、较高的比表面积和导电率,结合循环伏安(CV)曲线和恒电流充放电(GCD)图,分析计算得到测试电流密度为1A/g时,比电容值为594 F/g,因此制备得到的多孔CoSn(OH)6纳米立方体具有电容器储能放电方面的应用潜力。
-
公开(公告)号:CN111470539A
公开(公告)日:2020-07-31
申请号:CN201910997207.3
申请日:2019-10-20
Applicant: 安徽大学
IPC: C01G41/00 , B01J27/047 , C07C249/02 , C07C251/24
Abstract: 本发明公开了一种高效催化苄胺氧化偶联催化剂的制备方法。本方法通过油相法合成了表面带纹理的超薄二硫化钨纳米片,与其它制备片状二硫化钨方法相比,制备过程简单,重复性较好,形貌新颖;合成的二硫化钨对苄胺氧化偶联合成亚胺具有很好的催化作用,在60℃,无需额外光源和氧气,在室内光照下,空气氛围中,以乙腈为溶剂反应30 h后可得到高达97.91%的产率,98.61%的转化率以及99.29%的选择性,并且该催化反应具有优异的循环稳定性——循环五次之后仍然具有高达90%以上的产率,此外,对于苄胺同系物氧化偶联也表现出较高的催化性能。
-
公开(公告)号:CN111272742A
公开(公告)日:2020-06-12
申请号:CN202010153243.4
申请日:2020-03-06
Applicant: 安徽大学
IPC: G01N21/76
Abstract: 本发明公开了基于金属有机凝胶复合材料和金属有机框架的电致化学发光传感器及其制备和检测方法,该传感器是在玻碳电极表面固定AuNPs&g-C3N4@Zr-MOG复合纳米材料,在复合纳米材料的表面通过金-硫键固定经脱嘌呤/嘧啶位点修饰的捕获DNA;捕获DNA的另一端通过酰胺键连接猝灭物Fe-MIL-88金属有机框架。本发明通过电致化学发光传感器实现了对目标RNA序列的检测,方法简单、检测范围广、灵敏度高、易于操作。
-
公开(公告)号:CN107638887B
公开(公告)日:2020-04-28
申请号:CN201710896248.4
申请日:2017-09-22
Applicant: 安徽大学
IPC: B01J27/20 , C02F1/30 , C02F1/72 , C02F101/30
Abstract: 本发明提供了一种用于工业废水处理的C@NiFe‑LDH催化剂的制备方法,具体包括:(1)C球模板的制备;(2)NiFe‑LDH的制备;(3)C@NiFe‑LDH的制备;本发明首先通过水热法合成C球模板和NiFe‑LDH,然后通过超声条件将NiFe‑LDH、Ni2+和Fe3+吸附在碳球模板的表面,进一步通过微波水热法一方面直接将已存在的NiFe‑LDH镶嵌于C球结构中,另一方面通过Ni2+和Fe3+盐溶液的反应将NiFe‑LDH包覆于C球表面,从而形成了球状和层状复合的材料结构,该结构十分有利于催化材料性能的改进,其比表面积达到500‑800g/m2,在类芬顿反应体系在可见光照射下有着极高的催化降解效率,工业化前景显著。
-
-
-
-
-
-
-
-
-