-
公开(公告)号:CN114202696A
公开(公告)日:2022-03-18
申请号:CN202111534166.8
申请日:2021-12-15
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
Abstract: 本发明提供了一种基于上下文视觉的SAR目标检测方法、装置和存储介质,属于目标检测领域,包括:获取SAR图像;将SAR图像输入目标检测模型中,目标检测模型对SAR图像中的目标物进行定位和识别,获得检测结果。本发明通过从上到下和从下到上的注意力增强双向多尺度连接操作,以指导动态注意力矩阵的学习,增强不同分辨率下的特征交互,促使模型能够更为精准的提取多尺度的目标特征信息,回归检测框和分类,抑制干扰背景信息,从而增强了视觉表示能力。在增加注意力增强模块的情况下,整个Neck几乎不增加参数量和计算量也能使检测性能得到极强的增益。
-
公开(公告)号:CN114119582A
公开(公告)日:2022-03-01
申请号:CN202111455414.X
申请日:2021-12-01
Applicant: 安徽大学 , 安徽中科星联信息技术有限公司
Abstract: 本发明公开了一种合成孔径雷达图像目标检测方法,涉及目标检测技术领域,采用无锚框目标检测算法YOLOX作为基本框架,从轻量级的角度重构了特征提取骨干网络,将MobilenetV2中的深度可分离卷积替换成1个普通卷积和一个深度可分离卷积。特征图经过普通卷积通道数降为原来的一半,深度可分离卷积进一步提取普通卷积输入的特征,最后两者相拼接。此外通过设置注意增强CSEMPAN模块,采用整合通道和空间注意机制来突出SAR目标独特的强散射特性。并针对SAR目标的多尺度和强稀疏特性,设计不同扩张率的卷积增强接受域,使用ESPHead提高模型从不同尺度目标中提取重要信息的能力,进一步提高检测性能。
-