一种面向计算资源受限设备的多视图立体重建方法与系统

    公开(公告)号:CN116091712A

    公开(公告)日:2023-05-09

    申请号:CN202310382538.2

    申请日:2023-04-12

    Applicant: 安徽大学

    Abstract: 本申请属于三维重建技术领域,具体涉及面向计算资源受限设备的多视图立体重建方法与系统,方法包括:输入多视角的图像数据;根据输入的所述图像数据,计算相机的外部参数矩阵、内部参数矩阵和深度值范围,获取新的图像数据;构建端到端的多视图立体重建网络模型;将所述新的图像数据输入所述多视图立体构建网络模型进行训练,计算获得推理模型参数;将预训练的神经网络模型作为输入图像样本生成并融合全分辨率深度图,获得三维点云模型。本申请构建多视图立体重建网络模型,解决现有多视图立体方法对高性能计算资源的过度依赖问题,使得在计算资源受限的设备上实现基于深度学习的多视图立体重建过程。

    一种基于场景显著性区域一致性的航拍图像匹配方法

    公开(公告)号:CN114882258A

    公开(公告)日:2022-08-09

    申请号:CN202210505619.2

    申请日:2022-05-10

    Applicant: 安徽大学

    Abstract: 本发明公开一种基于场景显著性区域一致性的航拍图像匹配方法,包括计算查询航拍图像和参考航拍图像中的特征点和特征描述子,计算查询航拍图像中的显著性目标区域,从参考航拍图像中为查询航拍图像的显著性区域寻找对应匹配区域,计算查询航拍图像中显著性区域与对应的匹配区域之间的特征匹配结果,计算查询航拍图像中显著性区域以外的区域与参考航拍图像中非显著性区域之间的特征匹配结果,合并两个匹配结果获得两幅航拍图像之间的特征匹配结果。本发明利用查询航拍图像中的显著性目标区域、将高分辨率的航拍图像匹配问题转化为显著性区域和非显著性区域的特征匹配问题,既避免非重叠区域的特征匹配所带来的时间开销,又提高图像匹配的精度。

    基于深度感知迭代器的大规模多视图立体方法

    公开(公告)号:CN117437363A

    公开(公告)日:2024-01-23

    申请号:CN202311754136.7

    申请日:2023-12-20

    Applicant: 安徽大学

    Abstract: 本发明公开一种基于深度感知迭代器的大规模多视图立体方法,首先提取多尺度特征;然后,计算像素级视图权重、深度图和置信图;其次,构造深度感知迭代器;再次,构造混合损失策略,优化深度图;最后,融合深度图,即可获得点云模型。本发明充分利用基于深度感知迭代器的由粗到细的深度图计算方法,有效地将上下文引导的深度几何信息融合到代价体中计算出高质量的深度图,进而计算出精确的点云模型。

    基于形变场融合的可变形医学图像配准方法

    公开(公告)号:CN116977387B

    公开(公告)日:2023-12-15

    申请号:CN202311227166.2

    申请日:2023-09-22

    Applicant: 安徽大学

    Abstract: 本发明公开一种基于形变场融合的可变形医学图像配准方法,将预处理的待配准图像和参考图像输入到双流配准网络,双流配准网络设有两个架构相同但损失函数不同的分支网络,得到两个不同的形变场,通过形变场融合模块将这两个形变场融合,形变场融合模块分别对两个形变场进行最大池化和平均池化,并将得到的特征经过卷积层进行特征提取后,再由卷积层降维得到最终的形变场;最终根据形变场对待配准的图像进行配准,得到配准后的图像。本发明通过形变场融合模块有效地结合不同的形变场,充分利用不同形变场的优势来描述不同类型的形变,其双流配准网络的相似性损失函数能够描述参考图

    面向大规模三维重建的分布式集束调整方法

    公开(公告)号:CN116993925B

    公开(公告)日:2023-12-01

    申请号:CN202311240044.7

    申请日:2023-09-25

    Applicant: 安徽大学

    Abstract: 本发明公开一种面向大规模三维重建的分布式集束调整方法,先计算场景的稀疏点云模型和摄像机参数;针对稀疏点云模型和摄像机参数,建立对应的误差方程;根据摄像机的感知一致性,采用近似分割算法将大规模集束调整问题划分为分布式环境下可求解的小规模问题;采用道格拉斯‑拉赫福德分裂方方法求解每一个分布式节点上的优化问题;融合分布式节点上的点云模型和摄像机参数即可获得高质量的点云模型。本发明充分利用大规模图像数据之间的区域性,将大规模场景三维重建中的集束优化问题转化为可以在低性能计算机上求解的小规模集束优化问题,既提高三维重建的时间效率,又降低三维重建的成本。

    基于形变场融合的可变形医学图像配准方法

    公开(公告)号:CN116977387A

    公开(公告)日:2023-10-31

    申请号:CN202311227166.2

    申请日:2023-09-22

    Applicant: 安徽大学

    Abstract: 本发明公开一种基于形变场融合的可变形医学图像配准方法,将预处理的待配准图像和参考图像输入到双流配准网络,双流配准网络设有两个架构相同但损失函数不同的分支网络,得到两个不同的形变场,通过形变场融合模块将这两个形变场融合,形变场融合模块分别对两个形变场进行最大池化和平均池化,并将得到的特征经过卷积层进行特征提取后,再由卷积层降维得到最终的形变场;最终根据形变场对待配准的图像进行配准,得到配准后的图像。本发明通过形变场融合模块有效地结合不同的形变场,充分利用不同形变场的优势来描述不同类型的形变,其双流配准网络的相似性损失函数能够描述参考图像和待配准图像之间的相互依赖的上下文变化,提高配准精度。

    一种快速及高精度的全景图像裁剪方法

    公开(公告)号:CN116934774A

    公开(公告)日:2023-10-24

    申请号:CN202310800725.8

    申请日:2023-06-30

    Applicant: 安徽大学

    Abstract: 本发明公开一种快速及高精度的全景图像裁剪方法与系统,对于给定的全景图像,首先计算全景图像对应的二值图像(Mask);其次,计算二值图像包含的最大内接矩形;然后,根据最大内接矩形计算全景图像的感兴趣区域;最后,提取感兴趣域内的图像,即可获得完整图像信息。本发明公开的“一种快速及高精度的全景图像裁剪方法与系统”可以被应用于虚拟现实、增强现实、三维重建、道路资产数字化、数字孪生和元宇宙领域。

    一种全景图像高精度修复的处理方法以及系统

    公开(公告)号:CN116433536A

    公开(公告)日:2023-07-14

    申请号:CN202310692966.5

    申请日:2023-06-13

    Applicant: 安徽大学

    Abstract: 本发明提供一种全景图像高精度修复的处理方法,包括:获取全景图像;对所述全景图像依次进行掩膜分割处理、待修复裁剪处理,生成待修复区域图像;对所述全景图像中的所有像素进行分类标记处理,生成分类像素数据集;对窄边边界像素数据集进行邻域像素选取处理,生成窄边邻域像素数据集;对待修复像素以及邻域像素数据集分别依次进行权值函数处理,分别对应生成多个待修复像素灰度值以及多个邻域像素灰度值;以及对所述待修复区域图像进行修复填充处理,生成目标全景图像。通过本发明公开的一种全景图像高精度修复的处理方法以及系统,能够提升全景图像的修复精度,提高全景图像的利用率。

    一种面向高分辨率图像的多视图立体重建方法

    公开(公告)号:CN116071504B

    公开(公告)日:2023-06-09

    申请号:CN202310205404.3

    申请日:2023-03-06

    Applicant: 安徽大学

    Abstract: 本发明公开一种面向高分辨率图像的多视图立体重建方法,对参考图像和源图像使用动态特征提取网络计算特征图,将提取到的源视图特征映射到参照平面构建代价体;使用三维卷积神经网络对代价体进行正则化处理,获到概率体,通过偏置回归算法使得深度值更加接近真实值,进而提高深度图的精度。同时使用不确定性距离估计方法,优化深度值估计范围,计算出精确的深度采样范围,进而采用动态范围采样处理,重复上述操作,直到计算出半分辨率深度图,使用深度图优化网络对半分辨率的深度图进行优化,计算出全分辨率的深度图,对全分辨率的深度图进行融合,从而获得高质量的稠密点云模型。本发明能实现快速计算出大规模场景的高质量稠密点云的目标。

    一种面向大规模航拍图像的分布式多视图立体重建方法

    公开(公告)号:CN115719407A

    公开(公告)日:2023-02-28

    申请号:CN202310011438.9

    申请日:2023-01-05

    Applicant: 安徽大学

    Abstract: 本发明公开一种面向大规模航拍图像的分布式多视图立体重建方法,先计算场景的稀疏点云模型和摄像机姿态,将稀疏点云模型划分为不同的区域,计算每个区域中所包含图像的深度图,为每个区域选择两幅最佳的深度图像作为初始融合视图,融合每个区域的深度图像、即可获得每个区域内的稠密点云模型,合并多个区域内的稠密点云、即可获得完整场景的稠密点云模型。本发明充分利用了大规模航拍图像之间的区域性,将大规模场景的多视图立体重建问题转化为可以在低性能计算机上求解的小规模多视图立体重建问题,既提高了三维重建的时间效率,又降低了三维重建的成本。

Patent Agency Ranking