-
公开(公告)号:CN118520929A
公开(公告)日:2024-08-20
申请号:CN202411003497.2
申请日:2024-07-25
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06N3/09 , G06N3/0455 , G06F40/194
Abstract: 本发明提供一种文本相似度确定模型的训练方法及文本相似度计算方法,属于计算机技术领域,该训练方法包括:获取第一数据集和第二数据集;第一数据集中包括至少一个短文本数据对;第二数据集中包括至少一个目标文本数据对,目标文本数据对中的两个目标文本数据至少一个为长文本数据;基于句向量对比模型,获取第二数据集中各目标文本数据的关键表述;句向量对比模型是基于第一数据集和第一损失函数对第一预训练模型训练得到的;基于各关键表述和第二损失函数,对第二预训练模型进行训练,得到文本相似性确定模型。通过在判定过程中引入短文本和长文本,提升了文本相似度确定模型输出结果的准确性。
-
公开(公告)号:CN118277914A
公开(公告)日:2024-07-02
申请号:CN202311471891.4
申请日:2023-11-07
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/2431 , G06F18/24 , G06F18/213 , G06F18/22
Abstract: 本发明涉及APP分类分析技术领域,公开了一种基于动静结合多维度APK特征的移动应用分类方法,首先进行APP特征构建,基于主流手机应用商店、互联网小型分发平台、APP传播页面对APP的信息进行采集,具体通过APP所提供的功能或呈现的信息内容,识别APP的业务分类,采集通信类的信息,形成初始的测试数据集;再基于APP源码进行分析,获取APP的静态源码特征、动态流量和页面特征数据,具体包括名称、流量和内容信息;进行建立规则匹配模型和匹配机制,具体通过构建定时扫描程序,通过预设的各分类规则匹配模型进行识别和研判。本发明对具有显著技术特征或内容特征的APP具有较高的识别准确率,降低人工审核参与度。
-
公开(公告)号:CN118014049A
公开(公告)日:2024-05-10
申请号:CN202410177798.0
申请日:2024-02-08
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院自动化研究所
IPC: G06N3/09 , G06N3/0455 , G06F18/22 , G06F18/2431 , G06F40/30 , G06V20/70 , G06V10/40 , G06V10/82
Abstract: 本发明提供一种图文互生模型的训练方法,该方法包括:基于模态自感单元从样本模态数据中提取自感信息;模态自感单元基于自注意力网络通过多任务有监督训练得到;基于图文编码器对自感信息进行编码,得到隐空间特征,并对隐空间特征进行多模态扩散处理,得到扩散后的目标模态类型的隐空间特征;基于图文解码器对自感信息和扩散后的目标模态类型的隐空间特征进行解码,得到解码信息;根据解码信息和多任务损失函数对图文编码器和图文解码器进行训练,得到图文互生模型;目标损失包括重建损失、图像类的理解辅助任务对应损失和文本类的理解辅助任务对应损失确定。本发明所述方法提高了图文互生对应模型的性能和可适配性。
-
-
-
-
公开(公告)号:CN116821747A
公开(公告)日:2023-09-29
申请号:CN202310439834.1
申请日:2023-04-23
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/24 , G06F18/25 , G06N3/0464 , G06N3/08
Abstract: 本发明提供一种基于图文多模态信息融合的互联网不良应用分类识别方法,针对不良应用具有识别效果佳的优点。互联网不良应用分类识别方法包括:收集网站应用,并对网络应用进行类别标注;提取网站应用的应用名称并基于此构建第一向量;对网络应用进行沙盒运行,以获取网络应用的访问信息以及运行界面截图;基于访问信息构建第二向量;从运行界面截图中提取有效文本字符并基于此构建第三向量;融合第一向量、第二向量、第三向量,以获得融合向量;将融合向量作为输入,训练互联网不良应用分类识别模型,互联网不良应用分类识别模型包括全连接层、Softmax层、损失函数;基于训练完成的互联网不良应用分类识别模型对待识别的网站应用进行分类识别。
-
公开(公告)号:CN116628497A
公开(公告)日:2023-08-22
申请号:CN202310583452.6
申请日:2023-05-23
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/214 , G06F18/2415
Abstract: 本发明公开了一种基于联邦泛化数据处理方法、系统、计算设备及存储介质,所述方法包括:基于联邦对比学习进行数据建模,将数据样本标记为异常样本和正常样本的不同类别,每个本地模型在其本地数据集上进行联邦检测任务的迭代训练,并逐步更新其自己的参数;本地更新后,在可信的中央服务器聚合所有参与联邦检测任务的本地模型的参数,经过计算后聚合形成一个全局模型,然后服务器将所述全局模型分发给参与的终端,进行下次迭代训练。本发明实现在“数据孤岛”状态下对于样本的充分学习和利用,基于对比学习技术,拉近正常样本之间的距离,拉远异常样本距离,从而实现在保护隐私的前提下,对数据的建模,并为异常检测打下基础。
-
公开(公告)号:CN116401479A
公开(公告)日:2023-07-07
申请号:CN202310269520.1
申请日:2023-03-20
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC: G06F16/955 , H04L9/40 , G06F16/958 , G06F18/214 , G06F18/24 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及一种基于加密流量双向突发序列的网站内容行为识别方法和系统。该方法包括以下步骤:获取加密网站的行为流量数据;将行为流量数据预处理为双向突发序列;建立网站内容行为识别模型,以双向突发序列为输入对网站内容行为识别模型进行训练;利用训练完成的网站内容行为识别模型进行加密网站的网站内容行为识别。本发明选择双向突发序列作为输入,可以更好地捕获网站内容行为之间的差异;采用卷积神经网络构建流量表示模型,实现了自动地流量表示与特征提取,避免了人工特征提取和选择,最终达到准确识别加密网站内容行为流量的目的。
-
公开(公告)号:CN115495573A
公开(公告)日:2022-12-20
申请号:CN202210935919.4
申请日:2022-08-04
Applicant: 烟台中科网络技术研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种特定业务类型App的高效准确分类方法,首先构建App社交功能属性体系表,针对不同的功能属性构建关键词过滤规则,通过静态反编译的方式获取功能按钮进行规则匹配,进行细粒度核验,考虑到细粒度核验的速度慢准确率高的特点,将部分细粒度核验的结果人工校验后作为训练数据,以App简介作为输入数据进行深度学习模型训练,实现粗粒度核验,达到快速大批量核验。对核验结果进行人工校对,不断优化整个核验流程。本方法用于App类别判定工作,能够快速、准确地从海量App中筛选出特定业务类型对象。
-
-
-
-
-
-
-
-
-