-
公开(公告)号:CN115293479A
公开(公告)日:2022-11-04
申请号:CN202210559536.1
申请日:2022-05-23
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
Abstract: 本发明公开了一种舆情分析工作流系统,包括:数据分析功能模块,其包括N个能够进行舆情数据分析的数据分析模块;工作流建立模块,其根据舆情分析需求从数据分析功能模块中选择多个数据分析模块,按顺序进行连接,建立对特定任务进行分析的工作流,针对同一事件不同分析角度的舆情分析需求,建立多个工作流,以对多个舆情分析任务进行分析;工作流管理模块,其对建立的工作流进行数据分析计算,并通过可视化工作流图查看计算结果;事件管理模块,其对同一事件的多个舆情分析任务进行管理,并通过舆情分析数据构建不同任务之间的联系。本发明还提供了舆情分析工作流方法。本系统和方法能够根据舆情分析需求实现从不同层次和不同角度获得舆情信息。
-
公开(公告)号:CN113239663B
公开(公告)日:2022-07-12
申请号:CN202110309085.1
申请日:2021-03-23
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC: G06F40/126 , G06F40/216 , G06F40/242 , G06F40/284 , G06F40/295 , G06F40/30 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于知网的多义词中文实体关系识别方法,其步骤包括:1)对中文网事数据中的每一条语料样本基于知网进行字颗粒度的向量化,得到每一个字对的字颗粒度向量;然后对每一字颗粒度向量所在的位置信息进行编码,得到语料中每个字与预标注的待识别实体关系对的相对位置编码;2)根据步骤1)所得结果生成每一语料样本的字颗粒度语义向量集合;3)基于知网生成每一语料的词颗粒度语义向量集合;4)利用各语义向量及其对应位置编码训练深度自注意力神经网络,得到深度自注意力神经网络编码器;5)生成待处理语料中字和词汇的语义向量及其对应位置编码输入深度自注意力神经网络编码器,得到该待处理语料中的实体关系。
-
公开(公告)号:CN113255720A
公开(公告)日:2021-08-13
申请号:CN202110393842.8
申请日:2021-04-13
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06K9/62 , G06Q50/00 , G06F16/901
Abstract: 本发明公开了一种基于分层图池化的多视角聚类方法,包括以下步骤:将待处理数据划分成多视角数据集,然后将多视角数据集按各视角构建对应的图表示,得到对应的视图;采用分层图池化层迭代计算方法提取每个视图的聚类信息,每个视图的聚类信息包括对应该视图的粗化图和分配矩阵,该粗化图包括迭代后的邻接矩阵、特征矩阵、图拉普拉斯矩阵;采用多视角谱聚类融合方法融合所有视图的聚类信息,得到每一类特征向量所对应的类别。具有充分利用待处理数据本身的多视图特征,可以综合包含原各个视图的聚类信息。公开了一种基于分层图池化的多视角聚类系统,包括:图构建模块、聚类信息计算提取模块、多视角融合模块。本发明具有提升聚类效果的有益效果。
-
公开(公告)号:CN107633044B
公开(公告)日:2021-08-06
申请号:CN201710827984.4
申请日:2017-09-14
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种基于热点事件的舆情知识图谱构建方法,属于自然语言处理领域;首先实时获取微博文本,对每个微博文本进行处理,构建文本簇,计算每个文本簇所属的话题类别,按类别识别每个簇中的热点事件,统计每个热点事件的多维属性;识别参与热点事件讨论的重要人物和机构,并获取重要人物和机构的多维属性;最后构建事件、人物、机构的多维属性体系及关系类型,以事件、人物、机构为实体,事件、人物、机构之间的关系为关联,构建舆情知识图谱。本发明能够从多个维度对热点事件、人物、机构进行刻画,实现对热点事件、人物、机构的全方位解析;并根据实际需求,设置不同话题类别的权重,实现不同话题的舆情知识图谱构建。
-
公开(公告)号:CN110134944A
公开(公告)日:2019-08-16
申请号:CN201910275651.4
申请日:2019-04-08
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
Abstract: 本发明公开了一种基于强化学习的指代消解方法,包括:数据预处理:对文本数据进行分词、分句、词性标注、词形还原、命名实体识别、句法解析,词向量转换,得到候选先行词和指代词相关特征;构建神经网络模型:该模型结合词向量和相关特征能够学习指代对的特点和相关语义信息,更好的对候选先行词和指代词进行排序打分,最后得到指代链;使用训练好的模型进行指代消解,输入文本数据,输出消解链。本发明方法针对启发式损失函数的不足,采用奖励衡量的机制来进行深度学习训练,提高了模型效果,针对不同语言数据集自动进行超参设置,免除了手工设置的必要,提高了模型的实用性拓展了适用范围。
-
公开(公告)号:CN107784387A
公开(公告)日:2018-03-09
申请号:CN201710843010.5
申请日:2017-09-18
Applicant: 国家计算机网络与信息安全管理中心
CPC classification number: G06Q10/04 , G06F17/30675 , G06Q50/01
Abstract: 本发明公开了一种微博事件信息传播的连续动态预测方法,属于数据挖掘领域。针对新浪微博,在目前给定传播信息的基础上,试图预测下一阶段的微博总数量;按小时划分事件传播,利用事件从发生到当前时间段内传播特征,如微博量、参与人数、微博情绪等,基于GBDT模型预测下一小时内事件微博传播的总数。本发明预测模型中最优时间段长度和微博特征组合,是在全面衡量各特征的贡献度和相关性的基础上筛选出来的,不仅能够有效提高模型预测精度,平均模型精度超过70%,还能减小计算复杂性,避免无用计算,有效支持针对事件的预警和干预措施。
-
公开(公告)号:CN105893481A
公开(公告)日:2016-08-24
申请号:CN201610187149.4
申请日:2016-03-29
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F17/30
Abstract: 本发明提供一种基于马尔可夫聚类的实体间关系消解方法,包括:计算K个实体中任意两个实体之间的语义相似度;根据实体间的语义相似度构造赋权图G;构造状态转移矩阵M;在状态转移矩阵M上执行马尔科夫聚类算法,得到多个关系簇;其中,每个簇代表一系列语义相近似的实体。本发明提供的基于马尔可夫聚类的实体间关系消解方法具有以下优点:提出了融合词法和语义的相似度计算方法,然后给出了基于马尔科夫图聚类的关系聚类方法。该方法与层次聚类方法相比,聚类纯度指标有了一定提高,还具有计算过程简单快速的优点。
-
公开(公告)号:CN117520570A
公开(公告)日:2024-02-06
申请号:CN202310693072.8
申请日:2023-06-12
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/38 , G06F16/25 , G06N3/0442 , G06N3/0464 , G06N3/048 , G06F18/241
Abstract: 本发明公开了一种面向政策文件的智能文本辅助处理系统,属于信息管理领域,具体包括:采集层,数据层,处理层和应用层;所述采集层基于雷达采集软件、python技术以及大数据中心数据推送的方式对政策文件的相关信息进行获取;数据层通过ETL技术将数据载入至数据库;处理层对数据进行清洗加工和智能分析,供应用层使用;应用层实现信息可视化展示、快速检索、自动分类、多语言翻译、引用规范化和语音转写等。本发明具有高效性和易用性,在信息系统管理等领域有重要应用价值。
-
公开(公告)号:CN111930957A
公开(公告)日:2020-11-13
申请号:CN202010598739.2
申请日:2020-06-28
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明实施例公开了实体间亲密度的分析方法、装置、电子设备以及存储介质。所述方法包括:获取知识图谱中的多个实体以及所述多个实体之间的关系;根据所述多个实体中两个实体与所述多个实体中的其他实体之间的关系,确定所述两个实体之间的关系关联度;根据所述两个实体之间的关系关联度,确定所述两个实体之间的亲密度。基于该方法和装置,可以从实体间关系维度对实体间亲密度的分析,提高了实体间亲密度分析的全面性。
-
公开(公告)号:CN111861144A
公开(公告)日:2020-10-30
申请号:CN202010605353.X
申请日:2020-06-29
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了面向多维指标分析的评估方法,包括:获取预定地区的产业发展相关指标的数据,所述产业发展相关指标至少包括产业指标、科研机构指标及政策法规指标;对所述产业发展相关指标的数据执行无量纲化处理;根据无量纲化处理得到的数据,计算所述产业发展相关指标的熵值,根据所述熵值计算所述产业发展相关指标的权值;根据无量纲化处理得到的数据和权值,评估预定地区的产业发展。本发明还提供了面向多维指标分析的评估装置。本发明通过对多个角度的指标数据信息进行获取和计算,实现了全方面、多维度、快速评估。
-
-
-
-
-
-
-
-
-