-
公开(公告)号:CN115357909B
公开(公告)日:2023-05-16
申请号:CN202211279030.1
申请日:2022-10-19
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F21/57 , G06N3/042 , G06N3/0464 , G06N3/045 , G06N3/09
Abstract: 本发明提供了一种用于代码漏洞检测的全局信息感知图神经网络系统,包括关系代码表示模块和全局信息感知模块;关系代码表示模块在图卷积神经网络信息聚合过程中添加边类型信息,用边类型信息丰富节点特征表示,并使用注意力机制增强节点特征;全局信息感知模块在图卷积神经网络中使用大核卷积和小核卷积分别提取代码属性图中的全局特征和局部特征,学习更抽象高级的图表征用于代码漏洞分类。本发明的有益效果是:本发明能缓解传统图神经网络难以有效捕获大图图表征的缺陷,有效地学习代码量大的函数的代码属性图的向量表示并提升漏洞检测的准确率和F1指标。
-
公开(公告)号:CN115600012A
公开(公告)日:2023-01-13
申请号:CN202211523157.3
申请日:2022-12-01
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)(CN)
IPC: G06F16/9535 , G06F8/75 , G06F18/214 , G06N3/0464 , G06N3/08
Abstract: 本发明提供了一种基于知识增强和结构对比的API推荐方法,包括以下步骤:步骤1,代码预处理构图;解析源代码,提取方法、API和结构节点以及它们之间的关系,构成调用关系图和层次结构图;步骤2,知识增强的图嵌入学习;使用图卷积神经网络GCN在调用关系图上传播信息来细化方法和API的初始嵌入表示,同时用翻译模型TransH学习层次结构图中的实体和关系的嵌入表示;步骤3,多任务学习;包括主要的API推荐任务和辅助的对比学习任务。本发明的有益效果是:本发明提出了知识增强的图嵌入学习,使得方法和API的嵌入向量中不仅建模了调用交互还融合了代码中的层次结构信息,优化了方法和API的表示,达到更准确的推荐效果。
-
公开(公告)号:CN115599927A
公开(公告)日:2023-01-13
申请号:CN202211396787.9
申请日:2022-11-08
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)(CN)
IPC: G06F16/36 , G06F16/31 , G06F40/126 , G06N3/04
Abstract: 本发明公开了一种基于度量学习的时序知识图谱补全方法及系统,包括:将若干个候选尾实体分别填入待补全三元组,获得若干个待评估四元组;根据第一头实体和所有候选尾实体的所有邻居实体、第一实体关系、以及第一时序信息,对第一头实体和候选尾实体进行实时编码,获得头实体编码结果和尾实体编码结果,并编码得到时序知识图谱中样本数据集对应的四元组编码结果;利用度量学习机制,结合所有编码结果,对各待评估四元组进行相似度评分排序,并根据排序结果确定待补全三元组对应的第一尾实体。本发明根据待补全三元组内的第一实体关系和第一时序信息,并基于少量样本数据,筛选得到第一尾实体,使得能够在保证补全效果的同时,减少整体运算数据。
-
公开(公告)号:CN115357909A
公开(公告)日:2022-11-18
申请号:CN202211279030.1
申请日:2022-10-19
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种用于代码漏洞检测的全局信息感知图神经网络系统,包括关系代码表示模块和全局信息感知模块;关系代码表示模块在图卷积神经网络信息聚合过程中添加边类型信息,用边类型信息丰富节点特征表示,并使用注意力机制增强节点特征;全局信息感知模块在图卷积神经网络中使用大核卷积和小核卷积分别提取代码属性图中的全局特征和局部特征,学习更抽象高级的图表征用于代码漏洞分类。本发明的有益效果是:本发明能缓解传统图神经网络难以有效捕获大图图表征的缺陷,有效地学习代码量大的函数的代码属性图的向量表示并提升漏洞检测的准确率和F1指标。
-
公开(公告)号:CN114429109B
公开(公告)日:2022-07-19
申请号:CN202210354868.6
申请日:2022-04-06
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F40/169 , G06K9/62
Abstract: 本发明提供了一种基于评论有用性的自动用户评论摘要的方法,包括依次执行以下步骤:步骤1:预处理;对评论文本进行词形还原;步骤2:评论有用性预测;提取可能会影响评论有用性的特征,用所提取的特征来刻画评论,并使用随机森林分类模型预测评论的有用性;步骤3:基于二元词语的情感‑话题建模;向传统二元词语话题模型中加入情感变量,为评论同时建模话题和情感;步骤4:多要素话题和评论排序。本发明的有益效果是:1.本发明的方法可有效利用一些忽略的重要的评论特征辅助评论有用性预测、辅助后续的排序摘要任务;2.本发明的方法的话题的排序可以节约开发者的时间。
-
公开(公告)号:CN114638195A
公开(公告)日:2022-06-17
申请号:CN202210069337.2
申请日:2022-01-21
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 东莞理工学院 , 湖南大学
IPC: G06F40/126 , G06F40/211 , G06F40/284 , G06F16/35 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于多任务学习的立场检测方法。该方法通过将输入文本输入至多任务图网络模型,得到输入文本的立场检测极性和情感分类极性;所述多任务图网络模型为图卷积神经网络模型,多任务图网络模型包括文本输入处理模块、任务交互模块和任务相关注意力模块;文本编码模块用于将输入文本处理成多个词向量;任务交互模块用于构建立场相关图和情感相关图,并采用迭代交互异质图更新方法对立场相关图和情感相关图进行更新;任务相关注意力模块用于根据立场相关图的立场特征表示和情感相关图的情感特征表示计算输入文本的检测立场的极性和分类情感的极性。本发明技术方案提高了针对推文文本进行立场检测的准确性。
-
公开(公告)号:CN119854039A
公开(公告)日:2025-04-18
申请号:CN202510322618.8
申请日:2025-03-19
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本公开提供一种道路交通网络的道路终端接入方法及相关设备。该方法包括:获取来自道路终端的接入请求,所述接入请求包括所述道路终端的属性信息;基于所述接入请求对所述道路终端进行第一次身份认证;响应于所述第一次身份认证通过,向所述道路终端发送随机挑战值和第二次身份认证请求;接收来自所述道路终端针对第二次身份认证请求返回的密文和签名;其中,所述密文基于所述随机挑战值得到,所述签名基于所述密文得到;基于所述密文和所述签名进行第二次身份认证;响应于所述第二次身份认证通过,对所述道路终端的运行环境进行评估以得到评估结果;响应于所述评估结果符合预设要求,允许所述道路终端接入所述道路交通网络。
-
公开(公告)号:CN118277669A
公开(公告)日:2024-07-02
申请号:CN202410462841.8
申请日:2024-04-17
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 鹏城实验室
IPC: G06F16/9535 , G06F18/214 , G06F18/23 , G06F17/16 , G06N3/098
Abstract: 本发明公开了一种基于超图信号分解的联邦跨域推荐方法,属于数据挖掘技术领域。解决了现有技术中传统的跨域推荐方法的难以避免全局模型混入领域特有信息的问题;本发明设定总通信轮次,使用本地数据初始化训练客户端模型,服务器随机选取客户端训练;客户端使用本地的低通超图滤波器和高通超图滤波器分别得到领域特定和领域共享的用户表征和物品表征;客户端和服务器之间运行本地‑全局知识迁移算法;服务器对得到的领域共享的用户表征和更新后的低通超图滤波器的模型进行聚合;服务器将聚合后的全局用户表征和聚合后的低通超图滤波器的模型发送给客户,重复上述步骤直至执行完总通信轮次。本发明避免了出现负迁移问题,可以应用于联邦跨域推荐。
-
公开(公告)号:CN116069955A
公开(公告)日:2023-05-05
申请号:CN202310205496.5
申请日:2023-03-06
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F16/36 , G06F16/387 , G06F16/383 , G06F40/284 , G06F40/295 , G06F40/247
Abstract: 本发明提供了一种基于MDATA模型的时空知识抽取方法,包括以下步骤:步骤1,识别时间和空间知识;通过时间触发词表、空间触发词识别输入序列中的时空知识,并将序列中的时空知识替换为概念代号;步骤2,时空知识的实体关系依赖识别,得到知识五元组;步骤3,时间、空间知识规范化处理。本发明的有益效果是:1.时空信息在文本中有很强的语言特征,本发明方法通过触发词匹配,能高效获取时空信息;2.时空信息是时间表达的关键要素,在知识图谱中,时空信息是同实体、关系紧密联系的,本发明方法通过结合时空信息来进行知识抽取任务,能有效提升知识多元组的质量;3.本发明方法通过规范化处理,能统一时空信息的表达。
-
公开(公告)号:CN115600012B
公开(公告)日:2023-04-21
申请号:CN202211523157.3
申请日:2022-12-01
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F16/9535 , G06F8/75 , G06F18/214 , G06N3/0464 , G06N3/08
Abstract: 本发明提供了一种基于知识增强和结构对比的API推荐方法,包括以下步骤:步骤1,代码预处理构图;解析源代码,提取方法、API和结构节点以及它们之间的关系,构成调用关系图和层次结构图;步骤2,知识增强的图嵌入学习;使用图卷积神经网络GCN在调用关系图上传播信息来细化方法和API的初始嵌入表示,同时用翻译模型TransH学习层次结构图中的实体和关系的嵌入表示;步骤3,多任务学习;包括主要的API推荐任务和辅助的对比学习任务。本发明的有益效果是:本发明提出了知识增强的图嵌入学习,使得方法和API的嵌入向量中不仅建模了调用交互还融合了代码中的层次结构信息,优化了方法和API的表示,达到更准确的推荐效果。
-
-
-
-
-
-
-
-
-