-
公开(公告)号:CN117471326A
公开(公告)日:2024-01-30
申请号:CN202311488869.0
申请日:2023-11-09
Applicant: 哈尔滨工业大学(威海)
IPC: G01R31/367 , G01R31/392 , G01R31/00 , B60L58/16
Abstract: 本发明提供了一种锂离子电池组动态不一致性与健康状态评估方法,包括如下步骤:对采集的异常数据进行处理,将连续采集的数据切分为片段获得平均电压曲线;在获得切分后的单体电压数据与平均电压数据后,使用DTW对单体电压与平均电压间的相似度进行评估,获得每个单体与该片段平均电压的相似度;获得相似度后,从每个片段各单体的相似度中估计概率密度分布,使用核函数进行概率密度估计,获得概率密度函数;获得概率密度函数后,对每个片段求取不一致性指标,应用DBSCAN去除异常值后对数据进行拟合,获得最终的SOH变化曲线。本方法受外界干扰小、对采样精度要求低、对异常数据的鲁棒性强,对实车数据与云端数据的均具有更好的适应性。
-
公开(公告)号:CN116799904A
公开(公告)日:2023-09-22
申请号:CN202310738778.1
申请日:2023-06-20
Applicant: 哈尔滨工业大学(威海)
Abstract: 本发明提供了一种基于主动均衡的锂电池组全电量区间高效充电方法,在电池组快速充电过程中,将电池分为四个充电阶段,包括第一阶段采用多阶恒流快速充电的方式激励各单体电池均以较快速度充电至80%SOC附近,并且使各电池在该阶段充电结束时均能到达上截止电压附近;第二阶段采用恒压充电给电池充入更满的电量;第三阶段为电池静置阶段,将电池静置后根据开路电压获取各单体电池的SOC;第四阶段为均衡补电阶段,该阶段根据获得SOC值直接确定各电池需要均衡补电的时间,使各电池均能充满。本发明使电池组中的各单体电池能够在充电结束SOC值差异最小,且各电池均能够充满,该方法显著改善了电池组的充电效果,有效延长了单体电池的使用寿命。
-
公开(公告)号:CN116774047A
公开(公告)日:2023-09-19
申请号:CN202310742319.0
申请日:2023-06-21
Applicant: 重庆理工大学 , 哈尔滨工业大学(威海)
IPC: G01R31/367 , G01R31/392 , G01R31/396 , G06N3/0442 , G06N3/045 , G06N3/048 , G06N3/084
Abstract: 本发明涉及电池健康管理技术领域,具体涉及基于支路电流估计误差的并联电池组健康状态估计方法,包括:基于神经网络构建支路电流估计模型;将电池组特征数据输入支路电流估计模型,输出两条支路的估计电流;根据两条支路的估计电流和实际电流计算支路电流估计误差;分别计算两条支路的电流估计误差与电流倍率的斜率,并取平均值作为并联电池组的电流估计斜率;拟合电流估计斜率与健康状态之间的双指数经验模型关系,得到并联电池组的健康状态模型;基于支路电流估计模型和健康状态模型实现并联电池组的健康状态估计。本发明能够基于支路电流和电流倍率有效估计并联电池组的健康状态,并且能够通过神经网络模型实现支路电流的准确预测。
-
公开(公告)号:CN115097313A
公开(公告)日:2022-09-23
申请号:CN202210744779.2
申请日:2022-06-27
Applicant: 重庆理工大学 , 哈尔滨工业大学(威海)
IPC: G01R31/367 , G01R31/388
Abstract: 本发明具体涉及适用于多工况全电量区间的动力电池状态估算方法,包括:建立动力电池的等效电路模型,并对等效电路模型进行参数辨识;采集动力电池的开路电压特征数据并拟合动力电池的SOC‑OCV曲线;基于等效电路模型以及动态特征数据和SOC‑OCV曲线结合各种滤波算法生成对应的端电压预测值和SOC估计值;基于端电压预测值与对应实测值之间的电压残差,结合OWA算子为各种滤波算法的SOC估计值分配对应的加权值;基于各种滤波算法的SOC估计值及对应的加权值进行加权计算,得到动力电池的融合SOC估计值作为其状态估算结果。本发明能够有效融合多种滤波算法的SOC估计结果并实现多种滤波算法的互补,进而能够实现动力电池多工况全电量区间的SOC估计全局最优。
-
公开(公告)号:CN111965547B
公开(公告)日:2022-05-13
申请号:CN202011036224.X
申请日:2020-09-27
Applicant: 哈尔滨工业大学(威海) , 威海天达汽车科技有限公司
IPC: G01R31/367 , G01R31/382 , G01R31/392 , B60L58/10
Abstract: 本发明提供了一种基于参数辨识法的电池系统传感器故障诊断方法。该方法为:首先根据实验构建电池的OCV‑SOC‑容量三维响应面、阈值模型及容量估计模型;然后根据容量估计模型得到的容量值和安时积分法得到的SOC在三维响应面中查找到开路电压OCV的参考值;OCV的估计值则通过在线辨识算法估计得到;再将安时积分法得到的SOC代入阈值模型得到当前SOC时的故障诊断阈值;最后将OCV的参考值和估计值之差作为残差用于残差评价,当残差绝对值超过所设阈值即可判断传感器出现故障。本发明不仅考虑了电池老化和SOC对OCV参考值的影响,还考虑了OCV残差在全SOC区间的差异特性,有效降低了在电池全寿命周期传感器故障诊断的误警率和漏警率。
-
公开(公告)号:CN112068000B
公开(公告)日:2022-03-11
申请号:CN202011034157.8
申请日:2020-09-27
Applicant: 哈尔滨工业大学(威海)
IPC: G01R31/367 , G01R31/392
Abstract: 本发明提供了一种考虑动力电池耐久性影响的峰值功率预测方法,相对于现有技术除了以电池最高温度值作为约束外,还增加了电池温度的变化率约束和老化约束。由于电池的温升变化率在电池处于任意环境温度时均能很好的反应电池的健康变化情况,因此本发明能够更好的反应电池的健康状态变化情况,减少容量损失,提高耐久性。此外,考虑到电流倍率会对电池的容量衰退轨迹造成影响,本发明从容量损失模型入手推导出电流倍率与容量衰退约束的关系,以容量衰退限值为约束进行持续充放电峰值电流预测,进而实现电池持续充放电峰值功率预测,对于电池的耐久性具有重要意义。
-
公开(公告)号:CN112068000A
公开(公告)日:2020-12-11
申请号:CN202011034157.8
申请日:2020-09-27
Applicant: 哈尔滨工业大学(威海)
IPC: G01R31/367 , G01R31/392
Abstract: 本发明提供了一种考虑动力电池耐久性影响的峰值功率预测方法,相对于现有技术除了以电池最高温度值作为约束外,还增加了电池温度的变化率约束和老化约束。由于电池的温升变化率在电池处于任意环境温度时均能很好的反应电池的健康变化情况,因此本发明能够更好的反应电池的健康状态变化情况,减少容量损失,提高耐久性。此外,考虑到电流倍率会对电池的容量衰退轨迹造成影响,本发明从容量损失模型入手推导出电流倍率与容量衰退约束的关系,以容量衰退限值为约束进行持续充放电峰值电流预测,进而实现电池持续充放电峰值功率预测,对于电池的耐久性具有重要意义。
-
公开(公告)号:CN114723105B
公开(公告)日:2024-12-03
申请号:CN202210242862.X
申请日:2022-03-11
Applicant: 重庆理工大学 , 哈尔滨工业大学(威海)
IPC: G06Q10/04 , G06Q10/0631 , G06Q10/101 , G06Q50/04
Abstract: 本发明公开了一种基于0‑1规划的汽车零配件喷色生产排程方法,包括:获取喷色设备及喷色颜色数据,对所获取数据预处理;建立决策变量和中间变量;建立约束条件;建立目标函数及单目标优化模型;求解单目标优化模型。该方法通过选择事件发生的最基本情况为决策变量,为满足各条件建立合适的中间变量。决策变量和中间变量作为模型的基础,按照实际需求建立目标函数,根据条件限制建立约束方程,建立一个基于0‑1规划的单目标优化模型,该模型能够求出最优解且模型精度较高。
-
公开(公告)号:CN117148162A
公开(公告)日:2023-12-01
申请号:CN202311106779.0
申请日:2023-08-30
Applicant: 重庆理工大学 , 哈尔滨工业大学(威海)
IPC: G01R31/367 , G01R31/392 , G06F30/27 , G06N3/045
Abstract: 本发明具体涉及基于数据与模型融合的动力电池SOC和SOH估计方法,包括:构建动力电池的变阶次分数阶模型;基于变阶次分数阶模型估计动力电池的解析模型估计SOC;通过深度学习模型构建动力电池的SOC估计模型;基于SOC估计模型估计动力电池的数据驱动估计SOC;通过高斯融合原理对解析模型估计SOC和数据驱动估计SOC进行融合,得到融合SOC值;获取动力电池的容量先验估计值,通过融合SOC值修正容量先验估计值得到修正容量值;将融合估计SOC值和修正容量值作为SOC和SOH的估计结果。本发明能够将数据驱动模型和解析模型的SOC估计结果进行有效融合,并且能够利用准确估计的SOC来修正容量值(SOH),从而提高电池SOC和SOH联合估计的准确性和鲁棒性。
-
公开(公告)号:CN116859259A
公开(公告)日:2023-10-10
申请号:CN202310898185.1
申请日:2023-07-20
Applicant: 重庆理工大学 , 哈尔滨工业大学(威海)
IPC: G01R31/367 , G01R31/392
Abstract: 本发明具体涉及基于集成学习和实车大数据的电池健康状态估计方法,包括:对获取的实车电池大数据进行数据切片,生成若干个充电片段数据;基于蒙特卡洛模拟对各个充电片段数据进行容量估计,得到SOH标签;提取各个充电片段数据的健康特征因子,进而结合对应的SOH标签构建训练数据集;构建用于预测电池SOH的Stacking集成学习模型,并通过训练数据集训练Stacking集成学习模型;对于待估计的目标车辆,提取目标车辆实车电池数据中的健康特征因子并输入训练后的Stacking集成学习模型,得到对应的电池SOH估计结果。本发明通过Stacking集成学习模型实现电池SOH预测,并且采用实车电池大数据来训练Stacking集成学习模型,从而提高电池健康状态估计的准确性和实际应用效果。
-
-
-
-
-
-
-
-
-