一种由废纸制备磁性纤维素气凝胶的方法

    公开(公告)号:CN103980547B

    公开(公告)日:2015-12-30

    申请号:CN201410227151.0

    申请日:2014-05-27

    Abstract: 一种由废纸制备磁性纤维素气凝胶的方法,涉及一种气凝胶的制备方法。本发明的目的是提供一种由废纸制备再生磁性纤维素气凝胶的方法,使用生活中的废纸材料作为原材料制备绿色、超轻、高度多孔气凝胶吸油材料。所述方法步骤如下:步骤一、由废纸制备再生纤维素;步骤二、再生纤维素气凝胶的制备;步骤三、再生纤维素气凝胶的疏水改性;步骤四、磁性再生纤维素气凝胶吸油材料的制备。本发明的磁性纤维素气凝胶吸油材料利用生活废纸制备,能够大大节省材料,变废为宝,制作工艺简单、成本低、使用方便、能够有效吸收水中泄漏的多种有机溶剂和油类物质,吸收倍率高,吸油彻底,吸油材料无毒无害、引起二次污染很小,采用磁性收集方法简便易用。

    一种可控性智能蜘蛛网俘获装置及利用其俘获在轨飞行器的方法

    公开(公告)号:CN103241394B

    公开(公告)日:2015-03-18

    申请号:CN201310182681.3

    申请日:2013-05-17

    Abstract: 一种可控性智能蜘蛛网俘获装置及利用其俘获在轨飞行器的方法,涉及一种附着多巴及其衍生物的蜘蛛网俘获装置及利用其黏性而吸附粘接在轨飞行器的方法。所述俘获装置包括机械臂(1)、可控发射管(2)、蜘蛛网(3)和激光测距仪(4),机械臂(1)的末端设置有与机械臂(1)同轴心设置的激光测距仪(4),机械臂(1)末端的内壁上沿圆周方向均匀设置有若干个可控发射管(2),可控发射管(2)的内部设置有蜘蛛网(3)。本发明的俘获设备结构简单、设计巧妙,俘获材料体积小、重量轻、方便携带,可一次多携带。操作方式简单、俘获成功率高。简单易操作,成功率高,利于机动卫星及时俘获在轨飞行器。

    一种氧化石墨烯表面接枝改性芳纶纤维的方法

    公开(公告)号:CN104047160A

    公开(公告)日:2014-09-17

    申请号:CN201410269027.0

    申请日:2014-06-17

    Abstract: 一种氧化石墨烯表面接枝改性芳纶纤维的方法,涉及一种芳纶纤维的表面改性方法。为了改善芳纶与基体材料之间的结合力,从而提高复合材料的性能,所述方法步骤如下:一、氨基化氧化石墨烯的制备;二、多巴胺改性芳纶纤维;三、氧化石墨烯表面接枝改性芳纶纤维。本发明的氧化石墨烯接枝改性芳纶纤维是将氧化石墨烯接枝至多巴胺修饰的芳纶纤维上得到的;本发明利用席夫碱反应,借助具有大量活性基团的聚多巴胺涂层,将表面具有丰富氨基的氧化石墨烯接枝到多巴胺改性的芳纶纤维表面,具有无需高温加热,简单易行,环保无毒,对芳纶纤维无损伤等特点。本方法可得到表面均匀覆盖氧化石墨烯的芳纶纤维,该纤维与树脂基体的界面性能可得到明显改善。

    海藻纤维素气凝胶-氨基甲酸烷基酯类凝油剂复合溢油治理材料制备方法

    公开(公告)号:CN103992503A

    公开(公告)日:2014-08-20

    申请号:CN201410243425.5

    申请日:2014-06-04

    Abstract: 一种海藻纤维素气凝胶-氨基甲酸烷基酯类凝油剂复合溢油治理材料制备方法,涉及一种疏水-亲油-凝油性能兼具的多孔网络状结构材料的制备方法。所述方法具体操作步骤如下:步骤一、疏水性海藻纤维素气凝胶的制备;步骤二、制备氨基甲酸烷基酯类凝油剂;步骤三、海藻纤维素气凝胶-氨基甲酸烷基酯类凝油剂复合材料的制备。本发明采用天然可再生、对环境具有危害的海藻纤维素作为原料制备吸油材料,将其与凝油剂进行有效复合制备的溢油治理材料兼具凝油剂的凝油性能和吸油剂的吸油性能,能够有效吸收-胶凝泄漏到水中的油品以及有机溶剂等污染物。

    纤维素气凝胶-氨基甲酸烷基酯类凝油剂复合溢油治理材料的制备方法

    公开(公告)号:CN103980531A

    公开(公告)日:2014-08-13

    申请号:CN201410244025.6

    申请日:2014-06-04

    Abstract: 一种纤维素气凝胶-氨基甲酸烷基酯类凝油剂复合溢油治理材料的制备方法,涉及一种疏水-亲油-凝油性能兼具的多孔网络状结构材料的制备方法。所述方法步骤如下:(1)纤维素气凝胶的制备;(2)超疏水纤维素气凝胶的制备;(3)制备氨基甲酸烷基酯类凝油剂;(4)纤维素气凝胶-氨基甲酸烷基酯类凝油剂复合材料的制备。本发明采用天然可再生的纤维素进行疏水改性作为原料制备吸油材料,将吸油材料与凝油剂有效复合制备的溢油治理材料兼具凝油剂的凝油性能和吸油剂的吸油性能,具有成本低、环境友好,吸油快速、凝油效果好、保油率高、经济、可生物降解等许多优点。

    TDI衍生型双氨基甲酸烷基酯类凝油剂的制备方法

    公开(公告)号:CN103980162A

    公开(公告)日:2014-08-13

    申请号:CN201410243584.5

    申请日:2014-06-04

    Abstract: 一种TDI衍生型双氨基甲酸烷基酯类凝油剂的制备方法,涉及一种凝油剂的制备方法。所述方法步骤如下:(1)将0.05mol的TDI和0.10~0.12molC4~C22的脂肪醇或者芳香醇加入到100~200mL有机溶剂中搅拌均匀;(2)将混合物在50~70℃温度下持续搅拌反应,反应时间5~48h;(3)反应结束后,将溶剂蒸馏除去,得到浓缩液;(4)趁热将浓缩液倒入玻璃平皿中,置于120~150℃的真空干燥箱中真空干燥5~12h,即得TDI衍生型双氨基甲酸烷基酯类凝油剂。本发明制备的凝油剂能够有效胶凝溢出到水中的俄油、柴油、汽油、大豆油、花生油、环己烷、甲苯、四氯化碳等多种油品及有机溶剂,凝油剂添加量少、凝油速度快、凝油块强度高,凝油彻底。

    原位聚合法制备脲醛树脂微胶囊压敏胶黏剂

    公开(公告)号:CN103301792A

    公开(公告)日:2013-09-18

    申请号:CN201310182683.2

    申请日:2013-05-17

    Abstract: 原位聚合法制备脲醛树脂微胶囊压敏胶黏剂,涉及一种微胶囊的制备方法。本发明按照原位聚合法将丙烯酸酯压敏胶黏剂作为芯材料包裹在壳材料为脲醛树脂的微胶囊中。本发明第一次将丙烯酸酯压敏胶包裹在脲醛树脂微胶囊中,由于微胶囊的壁材没有粘性,使用时只需一定外力将微胶囊打破压敏胶便会流出来发挥作用,同时省去防粘纸可以达到节省原料保护环境的目的。

    一种仿壁虎结构粘合剂的制备方法

    公开(公告)号:CN103274354A

    公开(公告)日:2013-09-04

    申请号:CN201310182684.7

    申请日:2013-05-17

    Abstract: 一种仿壁虎结构粘合剂的制备方法,涉及一种仿壁虎脚微阵列的制备方法。本发明的仿壁虎结构粘合剂的制备方法:①采用氢气泡模板法制备多孔金属薄膜;②将高聚物与交联剂混合,抽真空,将混合液浇筑在多孔金属薄膜的模板中固化;③利用化学和电化学方法去除基底和多孔金属模板。本发明的制备方法操作简单,无需复杂仪器,实验参数可控,制备的仿壁虎脚微阵列结构具有很强的吸附力又能轻易脱离吸附表面、且具有超疏水性、自清洁能力。本发明以氢气泡模板法制备多孔金属作为模板制备的仿壁虎脚纳米阵列的面积为0.1-5cm2,直径为0.5-100μm,高度为0.5-20μm,材料的弹性模量为1-15GPa,剪切强度为1-150kPa。

    一种可控性智能蜘蛛网俘获装置及利用其俘获在轨飞行器的方法

    公开(公告)号:CN103241394A

    公开(公告)日:2013-08-14

    申请号:CN201310182681.3

    申请日:2013-05-17

    Abstract: 一种可控性智能蜘蛛网俘获装置及利用其俘获在轨飞行器的方法,涉及一种附着多巴及其衍生物的蜘蛛网俘获装置及利用其黏性而吸附粘接在轨飞行器的方法。所述俘获装置包括机械臂(1)、可控发射管(2)、蜘蛛网(3)和激光测距仪(4),机械臂(1)的末端设置有与机械臂(1)同轴心设置的激光测距仪(4),机械臂(1)末端的内壁上沿圆周方向均匀设置有若干个可控发射管(2),可控发射管(2)的内部设置有蜘蛛网(3)。本发明的俘获设备结构简单、设计巧妙,俘获材料体积小、重量轻、方便携带,可一次多携带。操作方式简单、俘获成功率高。简单易操作,成功率高,利于机动卫星及时俘获在轨飞行器。

    一种制备锂铝硅系微晶玻璃超细粉末的高分子网络凝胶法

    公开(公告)号:CN1238285C

    公开(公告)日:2006-01-25

    申请号:CN200410013562.6

    申请日:2004-02-18

    Abstract: 一种制备锂铝硅系微晶玻璃超细粉末的高分子网络凝胶法,涉及一种微晶玻璃粉末的合成方法。本发明按如下步骤进行制备:a.将TEOS溶于水中,用硝酸调节pH=2~3;b.分别将含锂化合物和含铝化合物溶解于稀硝酸中;c.待TEOS溶液透明后,将上述a步骤和b步骤得到的溶液混合均匀;d.向混合液中加入有机单体和交联剂;e.升温至70~100℃,然后加入引发剂,搅拌均匀,5~30分钟后得到湿凝胶块;f.将湿凝胶块在120℃下干燥12小时或在微波炉中用高火加热15~30分钟,得到干凝胶块;g.将干凝胶块在研钵中研磨后,置于煅烧炉中加热到600~1200℃,保温1~2小时,得到锂铝硅系微晶玻璃超细粉末。它具有成本低、合成速度快、纯度高和粒径小的优点。

Patent Agency Ranking